Poll
7 votes (41.17%) | |||
No votes (0%) | |||
2 votes (11.76%) | |||
2 votes (11.76%) | |||
2 votes (11.76%) | |||
6 votes (35.29%) | |||
No votes (0%) | |||
4 votes (23.52%) | |||
2 votes (11.76%) | |||
1 vote (5.88%) |
17 members have voted
If you didn't see the movie, it is the number of ways you can break down an integer into other integers of lesser or equal size. For example, let's say a blackjack dealer has chips in denominations from $1 to $5. You ask to break down a $5 chip and she asks "how?" How many ways can it be done?
The answer is 7:
1-1-1-1-1
2-1-1-1
2-2-1
3-1-1
3-2
4-1
5
Granted, getting another $5 chip back isn't breaking it down, but to be consistent, it counts as a partition.
I wrote both a spreadsheet and a program to get at answers for large numbers. Here they are for 1 to 405. At 406, I exceed the size of a 64-bit unsigned integer.
Total | Partitions |
---|---|
1 | 1 |
2 | 2 |
3 | 3 |
4 | 5 |
5 | 7 |
6 | 11 |
7 | 15 |
8 | 22 |
9 | 30 |
10 | 42 |
11 | 56 |
12 | 77 |
13 | 101 |
14 | 135 |
15 | 176 |
16 | 231 |
17 | 297 |
18 | 385 |
19 | 490 |
20 | 627 |
21 | 792 |
22 | 1002 |
23 | 1255 |
24 | 1575 |
25 | 1958 |
26 | 2436 |
27 | 3010 |
28 | 3718 |
29 | 4565 |
30 | 5604 |
31 | 6842 |
32 | 8349 |
33 | 10143 |
34 | 12310 |
35 | 14883 |
36 | 17977 |
37 | 21637 |
38 | 26015 |
39 | 31185 |
40 | 37338 |
41 | 44583 |
42 | 53174 |
43 | 63261 |
44 | 75175 |
45 | 89134 |
46 | 105558 |
47 | 124754 |
48 | 147273 |
49 | 173525 |
50 | 204226 |
51 | 239943 |
52 | 281589 |
53 | 329931 |
54 | 386155 |
55 | 451276 |
56 | 526823 |
57 | 614154 |
58 | 715220 |
59 | 831820 |
60 | 966467 |
61 | 1121505 |
62 | 1300156 |
63 | 1505499 |
64 | 1741630 |
65 | 2012558 |
66 | 2323520 |
67 | 2679689 |
68 | 3087735 |
69 | 3554345 |
70 | 4087968 |
71 | 4697205 |
72 | 5392783 |
73 | 6185689 |
74 | 7089500 |
75 | 8118264 |
76 | 9289091 |
77 | 10619863 |
78 | 12132164 |
79 | 13848650 |
80 | 15796476 |
81 | 18004327 |
82 | 20506255 |
83 | 23338469 |
84 | 26543660 |
85 | 30167357 |
86 | 34262962 |
87 | 38887673 |
88 | 44108109 |
89 | 49995925 |
90 | 56634173 |
91 | 64112359 |
92 | 72533807 |
93 | 82010177 |
94 | 92669720 |
95 | 104651419 |
96 | 118114304 |
97 | 133230930 |
98 | 150198136 |
99 | 169229875 |
100 | 190569292 |
101 | 214481126 |
102 | 241265379 |
103 | 271248950 |
104 | 304801365 |
105 | 342325709 |
106 | 384276336 |
107 | 431149389 |
108 | 483502844 |
109 | 541946240 |
110 | 607163746 |
111 | 679903203 |
112 | 761002156 |
113 | 851376628 |
114 | 952050665 |
115 | 1064144451 |
116 | 1188908248 |
117 | 1327710076 |
118 | 1482074143 |
119 | 1653668665 |
120 | 1844349560 |
121 | 2056148051 |
122 | 2291320912 |
123 | 2552338241 |
124 | 2841940500 |
125 | 3163127352 |
126 | 3519222692 |
127 | 3913864295 |
128 | 4351078600 |
129 | 4835271870 |
130 | 5371315400 |
131 | 5964539504 |
132 | 6620830889 |
133 | 7346629512 |
134 | 8149040695 |
135 | 9035836076 |
136 | 10015581680 |
137 | 11097645016 |
138 | 12292341831 |
139 | 13610949895 |
140 | 15065878135 |
141 | 16670689208 |
142 | 18440293320 |
143 | 20390982757 |
144 | 22540654445 |
145 | 24908858009 |
146 | 27517052599 |
147 | 30388671978 |
148 | 33549419497 |
149 | 37027355200 |
150 | 40853235313 |
151 | 45060624582 |
152 | 49686288421 |
153 | 54770336324 |
154 | 60356673280 |
155 | 66493182097 |
156 | 73232243759 |
157 | 80630964769 |
158 | 88751778802 |
159 | 97662728555 |
160 | 107438159466 |
161 | 118159068427 |
162 | 129913904637 |
163 | 142798995930 |
164 | 156919475295 |
165 | 172389800255 |
166 | 189334822579 |
167 | 207890420102 |
168 | 228204732751 |
169 | 250438925115 |
170 | 274768617130 |
171 | 301384802048 |
172 | 330495499613 |
173 | 362326859895 |
174 | 397125074750 |
175 | 435157697830 |
176 | 476715857290 |
177 | 522115831195 |
178 | 571701605655 |
179 | 625846753120 |
180 | 684957390936 |
181 | 749474411781 |
182 | 819876908323 |
183 | 896684817527 |
184 | 980462880430 |
185 | 1071823774337 |
186 | 1171432692373 |
187 | 1280011042268 |
188 | 1398341745571 |
189 | 1527273599625 |
190 | 1667727404093 |
191 | 1820701100652 |
192 | 1987276856363 |
193 | 2168627105469 |
194 | 2366022741845 |
195 | 2580840212973 |
196 | 2814570987591 |
197 | 3068829878530 |
198 | 3345365983698 |
199 | 3646072432125 |
200 | 3972999029388 |
201 | 4328363658647 |
202 | 4714566886083 |
203 | 5134205287973 |
204 | 5590088317495 |
205 | 6085253859260 |
206 | 6622987708040 |
207 | 7206841706490 |
208 | 7840656226137 |
209 | 8528581302375 |
210 | 9275102575355 |
211 | 10085065885767 |
212 | 10963707205259 |
213 | 11916681236278 |
214 | 12950095925895 |
215 | 14070545699287 |
216 | 15285151248481 |
217 | 16601598107914 |
218 | 18028182516671 |
219 | 19573856161145 |
220 | 21248279009367 |
221 | 23061871173849 |
222 | 25025873760111 |
223 | 27152408925615 |
224 | 29454549941750 |
225 | 31946390696157 |
226 | 34643126322519 |
227 | 37561133582570 |
228 | 40718063627362 |
229 | 44132934884255 |
230 | 47826239745920 |
231 | 51820051838712 |
232 | 56138148670947 |
233 | 60806135438329 |
234 | 65851585970275 |
235 | 71304185514919 |
236 | 77195892663512 |
237 | 83561103925871 |
238 | 90436839668817 |
239 | 97862933703585 |
240 | 105882246722733 |
241 | 114540884553038 |
242 | 123888443077259 |
243 | 133978259344888 |
244 | 144867692496445 |
245 | 156618412527946 |
246 | 169296722391554 |
247 | 182973889854026 |
248 | 197726516681672 |
249 | 213636919820625 |
250 | 230793554364681 |
251 | 249291451168559 |
252 | 269232701252579 |
253 | 290726957916112 |
254 | 313891991306665 |
255 | 338854264248680 |
256 | 365749566870782 |
257 | 394723676655357 |
258 | 425933084409356 |
259 | 459545750448675 |
260 | 495741934760846 |
261 | 534715062908609 |
262 | 576672674947168 |
263 | 621837416509615 |
264 | 670448123060170 |
265 | 722760953690372 |
266 | 779050629562167 |
267 | 839611730366814 |
268 | 904760108316360 |
269 | 974834369944625 |
270 | 1050197489931117 |
271 | 1131238503938606 |
272 | 1218374349844333 |
273 | 1312051800816215 |
274 | 1412749565173450 |
275 | 1520980492851175 |
276 | 1637293969337171 |
277 | 1762278433057269 |
278 | 1896564103591584 |
279 | 2040825852575075 |
280 | 2195786311682516 |
281 | 2362219145337711 |
282 | 2540952590045698 |
283 | 2732873183547535 |
284 | 2938929793929555 |
285 | 3160137867148997 |
286 | 3397584011986773 |
287 | 3652430836071053 |
288 | 3925922161489422 |
289 | 4219388528587095 |
290 | 4534253126900886 |
291 | 4872038056472084 |
292 | 5234371069753672 |
293 | 5622992691950605 |
294 | 6039763882095515 |
295 | 6486674127079088 |
296 | 6965850144195831 |
297 | 7479565078510584 |
298 | 8030248384943040 |
299 | 8620496275465025 |
300 | 9253082936723602 |
301 | 9930972392403501 |
302 | 10657331232548839 |
303 | 11435542077822104 |
304 | 12269218019229465 |
305 | 13162217895057704 |
306 | 14118662665280005 |
307 | 15142952738857194 |
308 | 16239786535829663 |
309 | 17414180133147295 |
310 | 18671488299600364 |
311 | 20017426762576945 |
312 | 21458096037352891 |
313 | 23000006655487337 |
314 | 24650106150830490 |
315 | 26415807633566326 |
316 | 28305020340996003 |
317 | 30326181989842964 |
318 | 32488293351466654 |
319 | 34800954869440830 |
320 | 37274405776748077 |
321 | 39919565526999991 |
322 | 42748078035954696 |
323 | 45772358543578028 |
324 | 49005643635237875 |
325 | 52462044228828641 |
326 | 56156602112874289 |
327 | 60105349839666544 |
328 | 64325374609114550 |
329 | 68834885946073850 |
330 | 73653287861850339 |
331 | 78801255302666615 |
332 | 84300815636225119 |
333 | 90175434980549623 |
334 | 96450110192202760 |
335 | 103151466321735325 |
336 | 110307860425292772 |
337 | 117949491546113972 |
338 | 126108517833796355 |
339 | 134819180623301520 |
340 | 144117936527873832 |
341 | 154043597379576030 |
342 | 164637479165761044 |
343 | 175943559810422753 |
344 | 188008647052292980 |
345 | 200882556287683159 |
346 | 214618299743286299 |
347 | 229272286871217150 |
348 | 244904537455382406 |
349 | 261578907351144125 |
350 | 279363328483702152 |
351 | 298330063062758076 |
352 | 318555973788329084 |
353 | 340122810048577428 |
354 | 363117512048110005 |
355 | 387632532919029223 |
356 | 413766180933342362 |
357 | 441622981929358437 |
358 | 471314064268398780 |
359 | 502957566506000020 |
360 | 536679070310691121 |
361 | 572612058898037559 |
362 | 610898403751884101 |
363 | 651688879997206959 |
364 | 695143713458946040 |
365 | 741433159884081684 |
366 | 790738119649411319 |
367 | 843250788562528427 |
368 | 899175348396088349 |
369 | 958728697912338045 |
370 | 1022141228367345362 |
371 | 1089657644424399782 |
372 | 1161537834849962850 |
373 | 1238057794119125085 |
374 | 1319510599727473500 |
375 | 1406207446561484054 |
376 | 1498478743590581081 |
377 | 1596675274490756791 |
378 | 1701169427975813525 |
379 | 1812356499739472950 |
380 | 1930656072350465812 |
381 | 2056513475336633805 |
382 | 2190401332423765131 |
383 | 2332821198543892336 |
384 | 2484305294265418180 |
385 | 2645418340688763701 |
386 | 2816759503217942792 |
387 | 2998964447736452194 |
388 | 3192707518433532826 |
389 | 3398704041358160275 |
390 | 3617712763867604423 |
391 | 3850538434667429186 |
392 | 4098034535626594791 |
393 | 4361106170762284114 |
394 | 4640713124699623515 |
395 | 4937873096788191655 |
396 | 5253665124416975163 |
397 | 5589233202595404488 |
398 | 5945790114707874597 |
399 | 6324621482504294325 |
400 | 6727090051741041926 |
401 | 7154640222653942321 |
402 | 7608802843339879269 |
403 | 8091200276484465581 |
404 | 8603551759348655060 |
405 | 9147679068859117602 |
I'll put my code in spoiler tags, if anyone wants to tackle this as a programming exercise.
void partitions(int max_series)
{
int i,j,k;
unsigned __int64 tot;
for (i=0; i<=1000; i++)
for (j=0; j<=1000; j++)
partition_array=0;
partition_array[1][0]=1;
for (i=2; i<=max_series; i++)
{
for (j=1; j<=i; j++) // first column
{
if (j*2<i) // less than half of total
{
tot=0;
for (k=1; k<=j; k++)
tot+=partition_array[i-j][k];
partition_array=tot;
}
else if (j==i)
partition_array=1;
else
partition_array=partition_array[i-j][0];
partition_array[0]+=partition_array;
}
printf("%i\t%I64i\n",i,partition_array[0]);
}
}
All that said, I'm not sure what my question is. Has anyone else messed with this? Please don't just plop in a Numberfile video and call it a day, let's try to have a discussion.
One of the mysteries of mathematics is a simple formula to the number of partitions of x, that doesn't just sum partitions of smaller numbers (as I did). As the movie I linked to goes into, Srinivasa Ramanujan found some relationships between a number and its number of partitions.
The question for the poll is how do you feel about partitions?"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
Because I hate interviewing, I don't feel good about partitions :P
Quote: rsactuaryI'm about ready to share my work if anyone is interested.
I'm interested.
Quote: WizardI'm interested.
I would also be interested.
Quote: tringlomaneI would also be interested.
Let me run it by Wiz and see what he thinks. I stress that it is strictly a theoretical exercise as there are too many unknowns without the PAR sheets to be able to apply it.
That caused me to factor the number of partitions to see how primey they were.
n | Partitions of n | Factorization of Partitions of n |
---|---|---|
2 | 2 | 2 |
3 | 3 | 3 |
4 | 5 | 5 |
5 | 7 | 7 |
6 | 11 | 11 |
7 | 15 | 3,5 |
8 | 22 | 2,11 |
9 | 30 | 2,3,5 |
10 | 42 | 2,3,7 |
11 | 56 | 2,2,2,7 |
12 | 77 | 7,11 |
13 | 101 | 101 |
14 | 135 | 3,3,3,5 |
15 | 176 | 2,2,2,2,11 |
16 | 231 | 3,7,11 |
17 | 297 | 3,3,3,11 |
18 | 385 | 5,7,11 |
19 | 490 | 2,5,7,7 |
20 | 627 | 3,11,19 |
21 | 792 | 2,2,2,3,3,11 |
22 | 1002 | 2,3,167 |
23 | 1255 | 5,251 |
24 | 1575 | 3,3,5,5,7 |
25 | 1958 | 2,11,89 |
26 | 2436 | 2,2,3,7,29 |
27 | 3010 | 2,5,7,43 |
28 | 3718 | 2,11,13,13 |
29 | 4565 | 5,11,83 |
30 | 5604 | 2,2,3,467 |
31 | 6842 | 2,11,311 |
32 | 8349 | 3,11,11,23 |
33 | 10143 | 3,3,7,7,23 |
34 | 12310 | 2,5,1231 |
35 | 14883 | 3,11,11,41 |
36 | 17977 | 17977 |
37 | 21637 | 7,11,281 |
38 | 26015 | 5,11,11,43 |
39 | 31185 | 3,3,3,3,5,7,11 |
40 | 37338 | 2,3,7,7,127 |
41 | 44583 | 3,7,11,193 |
42 | 53174 | 2,11,2417 |
43 | 63261 | 3,3,3,3,11,71 |
44 | 75175 | 5,5,31,97 |
45 | 89134 | 2,41,1087 |
46 | 105558 | 2,3,73,241 |
47 | 124754 | 2,7,7,19,67 |
48 | 147273 | 3,7,7013 |
49 | 173525 | 5,5,11,631 |
50 | 204226 | 2,11,9283 |
51 | 239943 | 3,11,11,661 |
52 | 281589 | 3,7,11,23,53 |
53 | 329931 | 3,3,7,5237 |
54 | 386155 | 5,7,11,17,59 |
55 | 451276 | 2,2,7,71,227 |
56 | 526823 | 11,47,1019 |
57 | 614154 | 2,3,102359 |
58 | 715220 | 2,2,5,11,3251 |
59 | 831820 | 2,2,5,11,19,199 |
60 | 966467 | 17,139,409 |
61 | 1121505 | 3,5,7,11,971 |
62 | 1300156 | 2,2,11,13,2273 |
63 | 1505499 | 3,113,4441 |
64 | 1741630 | 2,5,11,71,223 |
65 | 2012558 | 2,1006279 |
66 | 2323520 | 2,2,2,2,2,2,5,53,137 |
67 | 2679689 | 1181,2269 |
68 | 3087735 | 3,5,7,7,4201 |
69 | 3554345 | 5,641,1109 |
70 | 4087968 | 2,2,2,2,2,3,97,439 |
71 | 4697205 | 3,5,313147 |
72 | 5392783 | 11,139,3527 |
73 | 6185689 | 23,131,2053 |
74 | 7089500 | 2,2,5,5,5,11,1289 |
75 | 8118264 | 2,2,2,3,7,11,23,191 |
76 | 9289091 | 7,1327013 |
77 | 10619863 | 10619863 |
78 | 12132164 | 2,2,11,103,2677 |
79 | 13848650 | 2,5,5,173,1601 |
80 | 15796476 | 2,2,3,3,227,1933 |
81 | 18004327 | 11,1636757 |
82 | 20506255 | 5,7,7,7,11,1087 |
83 | 23338469 | 7,11,303097 |
84 | 26543660 | 2,2,5,11,13,9281 |
85 | 30167357 | 11,11,249317 |
86 | 34262962 | 2,23,37,41,491 |
87 | 38887673 | 11,3535243 |
88 | 44108109 | 3,3,83,137,431 |
89 | 49995925 | 5,5,7,7,40813 |
90 | 56634173 | 2473,22901 |
91 | 64112359 | 29,373,5927 |
92 | 72533807 | 3371,21517 |
93 | 82010177 | 59,1390003 |
94 | 92669720 | 2,2,2,5,11,13,17,953 |
95 | 104651419 | 283,369793 |
96 | 118114304 | 2,2,2,2,2,2,2,2,2,2,2,7,7,11,107 |
97 | 133230930 | 2,3,5,7,29,131,167 |
98 | 150198136 | 2,2,2,11,1706797 |
99 | 169229875 | 5,5,5,1353839 |
100 | 190569292 | 2,2,43,59,89,211 |
101 | 214481126 | 2,31,3459373 |
102 | 241265379 | 3,2423,33191 |
103 | 271248950 | 2,5,5,7,774997 |
104 | 304801365 | 3,5,11,1847281 |
105 | 342325709 | 11,43,43,16831 |
106 | 384276336 | 2,2,2,2,3,8005757 |
107 | 431149389 | 3,11,173,75521 |
108 | 483502844 | 2,2,11,10988701 |
109 | 541946240 | 2,2,2,2,2,2,2,5,11,23,3347 |
110 | 607163746 | 2,7,4049,10711 |
111 | 679903203 | 3,7,67,483229 |
112 | 761002156 | 2,2,190250539 |
113 | 851376628 | 2,2,212844157 |
114 | 952050665 | 5,193,986581 |
115 | 1064144451 | 3,61,67,229,379 |
116 | 1188908248 | 2,2,2,11,11,157,7823 |
117 | 1327710076 | 2,2,7,7,11,615821 |
118 | 1482074143 | 11,197,827,827 |
119 | 1653668665 | 5,11,30066703 |
120 | 1844349560 | 2,2,2,5,47,981037 |
121 | 2056148051 | 461,4460191 |
122 | 2291320912 | 2,2,2,2,9013,15889 |
123 | 2552338241 | 79,32308079 |
124 | 2841940500 | 2,2,3,5,5,5,7,31,8731 |
125 | 3163127352 | 2,2,2,3,7,11,59,67,433 |
126 | 3519222692 | 2,2,89,379,26083 |
127 | 3913864295 | 5,11,67,1062107 |
128 | 4351078600 | 2,2,2,5,5,11,17,317,367 |
129 | 4835271870 | 2,3,3,5,11,13,157,2393 |
130 | 5371315400 | 2,2,2,5,5,11,157,15551 |
131 | 5964539504 | 2,2,2,2,7,7,7,11,29,3407 |
132 | 6620830889 | 6620830889 |
133 | 7346629512 | 2,2,2,3,3,1319,77359 |
134 | 8149040695 | 5,17,89,1077203 |
135 | 9035836076 | 2,2,59,569,67289 |
136 | 10015581680 | 2,2,2,2,5,13,31,41,7577 |
137 | 11097645016 | 2,2,2,17,1367,59693 |
138 | 12292341831 | 3,3,7,7,11,733,3457 |
139 | 13610949895 | 5,79,34458101 |
140 | 15065878135 | 5,7,11,39132151 |
141 | 16670689208 | 2,2,2,29,31,991,2339 |
142 | 18440293320 | 2,2,2,3,3,5,127,403331 |
143 | 20390982757 | 7589,2686913 |
144 | 22540654445 | 5,5807,776327 |
145 | 24908858009 | 7,7,53,73,83,1583 |
146 | 27517052599 | 53197,517267 |
147 | 30388671978 | 2,3,7,24151,29959 |
148 | 33549419497 | 11,73,41780099 |
149 | 37027355200 | 2,2,2,2,2,2,5,5,11,11,11,17387 |
150 | 40853235313 | 11,17,197,1108967 |
151 | 45060624582 | 2,3,7510104097 |
152 | 49686288421 | 7,11,751,859223 |
153 | 54770336324 | 2,2,11,34513,36067 |
154 | 60356673280 | 2,2,2,2,2,2,2,2,5,37,1274423 |
155 | 66493182097 | 19,8087,432749 |
156 | 73232243759 | 463,1777,89009 |
157 | 80630964769 | 80630964769 |
158 | 88751778802 | 2,79,691,853,953 |
159 | 97662728555 | 5,7,29,67,1436111 |
160 | 107438159466 | 2,3,3,11,443,1224869 |
161 | 118159068427 | 797,148254791 |
162 | 129913904637 | 3,3,11,127,10332769 |
163 | 142798995930 | 2,3,5,4759966531 |
164 | 156919475295 | 3,3,5,11,14867,21323 |
165 | 172389800255 | 5,313,1543,71389 |
166 | 189334822579 | 7,7,37,53,1277,1543 |
167 | 207890420102 | 2,19,73,503,148991 |
168 | 228204732751 | 228204732751 |
169 | 250438925115 | 3,3,3,5,1855103149 |
170 | 274768617130 | 2,5,7,47,83516297 |
171 | 301384802048 | 2,2,2,2,2,2,2,2,11,11,1609,6047 |
172 | 330495499613 | 103,2351,1364821 |
173 | 362326859895 | 3,5,7,11,13,37,652189 |
174 | 397125074750 | 2,5,5,5,103,1627,9479 |
175 | 435157697830 | 2,5,43515769783 |
176 | 476715857290 | 2,5,443,107610803 |
177 | 522115831195 | 5,7,97,153789641 |
178 | 571701605655 | 3,5,17,2241967081 |
179 | 625846753120 | 2,2,2,2,2,5,277,3467,4073 |
180 | 684957390936 | 2,2,2,3,7,7,13,59,643,1181 |
181 | 749474411781 | 3,249824803927 |
182 | 819876908323 | 11,23,27967,115873 |
183 | 896684817527 | 61,293,50169799 |
184 | 980462880430 | 2,5,11,107,83301859 |
185 | 1071823774337 | 3469,6653,46441 |
186 | 1171432692373 | 1171432692373 |
187 | 1280011042268 | 2,2,7,7,18713,348991 |
188 | 1398341745571 | 1398341745571 |
189 | 1527273599625 | 3,3,3,3,5,5,5,61,127,19471 |
190 | 1667727404093 | 317,7283,722363 |
191 | 1820701100652 | 2,2,3,7,11171,1940293 |
192 | 1987276856363 | 23,503,171776027 |
193 | 2168627105469 | 3,11,71,269,3440807 |
194 | 2366022741845 | 5,7,7,521,18535961 |
195 | 2580840212973 | 3,11,78207279181 |
196 | 2814570987591 | 3,11,89,958314943 |
197 | 3068829878530 | 2,5,13,43,257,2136131 |
198 | 3345365983698 | 2,3,3,185853665761 |
199 | 3646072432125 | 3,3,5,5,5,3240953273 |
200 | 3972999029388 | 2,2,3,331083252449 |
201 | 4328363658647 | 7,19,23,47,4441,6779 |
202 | 4714566886083 | 3,837673,1876057 |
203 | 5134205287973 | 151,34001359523 |
204 | 5590088317495 | 5,11,19,5349366811 |
205 | 6085253859260 | 2,2,5,304262692963 |
206 | 6622987708040 | 2,2,2,5,11,15052244791 |
207 | 7206841706490 | 2,3,3,5,829,5399,17891 |
208 | 7840656226137 | 3,7,373364582197 |
209 | 8528581302375 | 3,5,5,5,19,197,2083,2917 |
210 | 9275102575355 | 5,487,1091,3491363 |
211 | 10085065885767 | 3,17,61,227,14280811 |
212 | 10963707205259 | 10963707205259 |
213 | 11916681236278 | 2,7,13,31,79,131,409,499 |
214 | 12950095925895 | 3,5,2351,7573,48491 |
215 | 14070545699287 | 7,7,11,11,23497,100999 |
216 | 15285151248481 | 15285151248481 |
217 | 16601598107914 | 2,2140069,3878753 |
218 | 18028182516671 | 53,340154387107 |
219 | 19573856161145 | 5,11,13,313,87463331 |
220 | 21248279009367 | 3,7082759669789 |
221 | 23061871173849 | 3,223,138283,249287 |
222 | 25025873760111 | 3,7,17,1259,55679497 |
223 | 27152408925615 | 3,5,23,353,4801,46439 |
224 | 29454549941750 | 2,5,5,5,16301,7227667 |
225 | 31946390696157 | 3,7,37,97,2887,146819 |
226 | 34643126322519 | 3,11,13,13,79,78630193 |
227 | 37561133582570 | 2,5,13,173,449,3719657 |
228 | 40718063627362 | 2,11,23,80470481477 |
229 | 44132934884255 | 5,7,7,191,943112189 |
230 | 47826239745920 | 2,2,2,2,2,2,2,5,109843,680321 |
231 | 51820051838712 | 2,2,2,3,59,59,620272573 |
232 | 56138148670947 | 3,7,32009,83515423 |
233 | 60806135438329 | 307,347,9749,58549 |
234 | 65851585970275 | 5,5,7,376294776973 |
235 | 71304185514919 | 7,10186312216417 |
236 | 77195892663512 | 2,2,2,7,7,263,748776797 |
237 | 83561103925871 | 11,11,13,17,677,4615703 |
238 | 90436839668817 | 3,7591,3971230829 |
239 | 97862933703585 | 3,5,1114697,5852887 |
240 | 105882246722733 | 3,13,13,83,2516153293 |
241 | 114540884553038 | 2,57270442276519 |
242 | 123888443077259 | 7,31,570914484227 |
243 | 133978259344888 | 2,2,2,7,7,97,5783,609289 |
244 | 144867692496445 | 5,14813,1955953453 |
245 | 156618412527946 | 2,4007,19543101139 |
246 | 169296722391554 | 2,431,18433,10654799 |
247 | 182973889854026 | 2,77899,1174430287 |
248 | 197726516681672 | 2,2,2,11,79,28441673861 |
249 | 213636919820625 | 3,3,3,5,5,5,5,7,277,6529121 |
250 | 230793554364681 | 3,7,11,10037,99542323 |
251 | 249291451168559 | 887,281050114057 |
252 | 269232701252579 | 4177,64455997427 |
253 | 290726957916112 | 2,2,2,2,53,73,4696416353 |
254 | 313891991306665 | 5,17,643,9649,595207 |
255 | 338854264248680 | 2,2,2,5,631,859,1429,10937 |
256 | 365749566870782 | 2,91381,2001234211 |
257 | 394723676655357 | 3,7,18796365555017 |
258 | 425933084409356 | 2,2,545863,195073253 |
259 | 459545750448675 | 3,5,5,11,234197,2378447 |
260 | 495741934760846 | 2,31,53,150864861461 |
261 | 534715062908609 | 11,41,349,20389,166619 |
262 | 576672674947168 | 2,2,2,2,2,19,439,2160534839 |
263 | 621837416509615 | 5,419,29867,9938051 |
264 | 670448123060170 | 2,5,7,7,13,41,1907,1346143 |
265 | 722760953690372 | 2,2,419,8167,52802941 |
266 | 779050629562167 | 3,3,3,28853727020821 |
267 | 839611730366814 | 2,3,53,6857,385050089 |
268 | 904760108316360 | 2,2,2,3,3,5,2513222523101 |
269 | 974834369944625 | 5,5,5,173,45079046009 |
270 | 1050197489931117 | 3,11,83,47309,8104667 |
271 | 1131238503938606 | 2,7,3041,26571111569 |
272 | 1218374349844333 | 11,317333,349038091 |
273 | 1312051800816215 | 5,499,2003,9829,26711 |
274 | 1412749565173450 | 2,5,5,7,7,173,4327,770311 |
275 | 1520980492851175 | 5,5,60839219714047 |
276 | 1637293969337171 | 167,1777,1931,2857199 |
277 | 1762278433057269 | 3,3,29,6752024647729 |
278 | 1896564103591584 | 2,2,2,2,2,3,7,7,7,23,2504230711 |
279 | 2040825852575075 | 5,5,373,218855319311 |
280 | 2195786311682516 | 2,2,7,389,3853,52321891 |
281 | 2362219145337711 | 3,11,37,983809,1966499 |
282 | 2540952590045698 | 2,29,59,619,1199570861 |
283 | 2732873183547535 | 5,7,7,53,210463857031 |
284 | 2938929793929555 | 3,5,790189,247951633 |
285 | 3160137867148997 | 7,7,7,52517,175433287 |
286 | 3397584011986773 | 3,3,3,7,43,547,764280217 |
287 | 3652430836071053 | 73,50033299124261 |
288 | 3925922161489422 | 2,3,103,2162249,2937971 |
289 | 4219388528587095 | 3,5,263,1069553492671 |
290 | 4534253126900886 | 2,3,227,9349,356093047 |
291 | 4872038056472084 | 2,2,1218009514118021 |
292 | 5234371069753672 | 2,2,2,7,7,11,97,223,56118901 |
293 | 5622992691950605 | 5,7087043,158683747 |
294 | 6039763882095515 | 5,11,13,73,1187,7027,13873 |
295 | 6486674127079088 | 2,2,2,2,461,1033,851335711 |
296 | 6965850144195831 | 3,7,83,5783,691072399 |
297 | 7479565078510584 | 2,2,2,3,3,3413,6971,4366289 |
298 | 8030248384943040 | 2,2,2,2,2,2,3,5,4801,1742312449 |
299 | 8620496275465025 | 5,5,7,17,2897645806879 |
300 | 9253082936723602 | 2,137,1021,33075784213 |
301 | 9930972392403501 | 3,6491,509986771037 |
302 | 10657331232548839 | 10657331232548839 |
303 | 11435542077822104 | 2,2,2,11,53,2451874373461 |
304 | 12269218019229465 | 3,5,7,257,617,1249,589993 |
305 | 13162217895057704 | 2,2,2,11,117101,1277279083 |
306 | 14118662665280005 | 5,7,23,67,79,2357,1405841 |
307 | 15142952738857194 | 2,3,3,41,607,33803799259 |
308 | 16239786535829663 | 11149,68473,21272819 |
309 | 17414180133147295 | 5,12650773,275306183 |
310 | 18671488299600364 | 2,2,181,503,51271070537 |
311 | 20017426762576945 | 5,13,31,199,33479,1491103 |
312 | 21458096037352891 | 7,15493,217027,911683 |
313 | 23000006655487337 | 7,7,7,41,1635497877799 |
314 | 24650106150830490 | 2,3,3,5,11,59,422018595289 |
315 | 26415807633566326 | 2,691,1609,11879544977 |
316 | 28305020340996003 | 3,3,11,113,233,10859101993 |
317 | 30326181989842964 | 2,2,557,44111,308571383 |
318 | 32488293351466654 | 2,13,3881,321965922259 |
319 | 34800954869440830 | 2,3,5,7,165718832711623 |
320 | 37274405776748077 | 7,109,48852432210679 |
321 | 39919565526999991 | 7,5702795075285713 |
322 | 42748078035954696 | 2,2,2,3,37,48139727517967 |
323 | 45772358543578028 | 2,2,47279,415343,582731 |
324 | 49005643635237875 | 5,5,5,17,19,1213762071461 |
325 | 52462044228828641 | 11,79,1013,38749,1537997 |
326 | 56156602112874289 | 13,701,6162251960153 |
327 | 60105349839666544 | 2,2,2,2,7,7,17,79,277,283,728207 |
328 | 64325374609114550 | 2,5,5,73,17623390303867 |
329 | 68834885946073850 | 2,5,5,523,661673,3978263 |
330 | 73653287861850339 | 3,24551095953950113 |
331 | 78801255302666615 | 5,463,701,1033,1069,43973 |
332 | 84300815636225119 | 29,31,151,37447,16583573 |
333 | 90175434980549623 | 29,67,149,2819,110492831 |
334 | 96450110192202760 | 2,2,2,5,7,7,43,61,86981,215687 |
335 | 103151466321735325 | 5,5,13,12161,26098933241 |
336 | 110307860425292772 | 2,2,3,11,41,341743,59641567 |
337 | 117949491546113972 | 2,2,20533,1436096668121 |
338 | 126108517833796355 | 5,11,13,176375549417897 |
339 | 134819180623301520 | 2,2,2,2,3,5,561746585930423 |
340 | 144117936527873832 | 2,2,2,3,3,3,109,6121217147803 |
341 | 154043597379576030 | 2,3,5,7,7,1079531,97071379 |
342 | 164637479165761044 | 2,2,3,3,19,8761,27473812231 |
343 | 175943559810422753 | 23,76253,178897,560771 |
344 | 188008647052292980 | 2,2,5,10937,617657,1391561 |
345 | 200882556287683159 | 79,113,1156801,19452617 |
346 | 214618299743286299 | 7,5923,28069,184416611 |
347 | 229272286871217150 | 2,3,3,3,5,5,11,2311,9257,721697 |
348 | 244904537455382406 | 2,3,7,17,23,14913197993873 |
349 | 261578907351144125 | 5,5,5,23,523,173965521557 |
350 | 279363328483702152 | 2,2,2,3,47,349,997,711770053 |
351 | 298330063062758076 | 2,2,3,7,106783,33259492333 |
352 | 318555973788329084 | 2,2,3391,382231,61442951 |
353 | 340122810048577428 | 2,2,3,239,118592332652921 |
354 | 363117512048110005 | 3,5,29,47,67,971,273002137 |
355 | 387632532919029223 | 7,24113,2296523706353 |
356 | 413766180933342362 | 2,101,3557,15199,37888267 |
357 | 441622981929358437 | 3,13,13,871051246408991 |
358 | 471314064268398780 | 2,2,3,3,3,5,11,11,13,401,1383705109 |
359 | 502957566506000020 | 2,2,5,101,349,104459,6829811 |
360 | 536679070310691121 | 11,14423,3382722484357 |
361 | 572612058898037559 | 3,3,131,485676046563221 |
362 | 610898403751884101 | 7,7,4793,2601150503293 |
363 | 651688879997206959 | 3,433,4793,104670363037 |
364 | 695143713458946040 | 2,2,2,5,43,4171819,96877003 |
365 | 741433159884081684 | 2,2,3,2137,89491,323077621 |
366 | 790738119649411319 | 790738119649411319 |
367 | 843250788562528427 | 599,1237,1138047093529 |
368 | 899175348396088349 | 73,101,179,382429,1781543 |
369 | 958728697912338045 | 3,5,7,11,751,1105283803889 |
370 | 1022141228367345362 | 2,49556849,10312814969 |
371 | 1089657644424399782 | 2,71,7673645383270421 |
372 | 1161537834849962850 | 2,3,3,5,5,7,547,757,890511641 |
373 | 1238057794119125085 | 3,5,683,722639,167227447 |
374 | 1319510599727473500 | 2,2,3,5,5,5,983,1831,5101,95813 |
375 | 1406207446561484054 | 2,3347,210069830678441 |
376 | 1498478743590581081 | 7,7,431,1949,66863,544477 |
377 | 1596675274490756791 | 2389,16197169,41263051 |
378 | 1701169427975813525 | 5,5,197,331031,1043452463 |
379 | 1812356499739472950 | 2,5,5,73,127,5081,769480909 |
380 | 1930656072350465812 | 2,2,11,43878547098874223 |
381 | 2056513475336633805 | 3,5,227,2801473,215589697 |
382 | 2190401332423765131 | 3,11,66375797952235307 |
383 | 2332821198543892336 | 2,2,2,2,7,7,53,227,177043,1396963 |
384 | 2484305294265418180 | 2,2,5,31,997,4019001026087 |
385 | 2645418340688763701 | 43,11738107,5241165101 |
386 | 2816759503217942792 | 2,2,2,67,2333,8963,12421,20233 |
387 | 2998964447736452194 | 2,131,1607,14149,14449,34841 |
388 | 3192707518433532826 | 2,1596353759216766413 |
389 | 3398704041358160275 | 5,5,13,43,20921,11624628749 |
390 | 3617712763867604423 | 7,7,25439,2902271029993 |
391 | 3850538434667429186 | 2,11,37717,4640466482039 |
392 | 4098034535626594791 | 3,3,137,167,619,32151809299 |
393 | 4361106170762284114 | 2,367,569,1283,21487,378779 |
394 | 4640713124699623515 | 3,5,17,359,78401,646589267 |
395 | 4937873096788191655 | 5,6553,46451,3244402177 |
396 | 5253665124416975163 | 3,3,49789639,11724137413 |
397 | 5589233202595404488 | 2,2,2,7,23,31,37,3783318894683 |
398 | 5945790114707874597 | 3,3,660643346078652733 |
399 | 6324621482504294325 | 3,3,5,5,191,147169784351467 |
400 | 6727090051741041926 | 2,23869,140916880718527 |
401 | 7154640222653942321 | 71,2381,151273,279774827 |
402 | 7608802843339879269 | 3,11,7151,32243012604043 |
403 | 8091200276484465581 | 7,3911,10093,29282410321 |
404 | 8603551759348655060 | 2,2,5,7,61453941138204679 |
405 | 9147679068859117602 | 2,3,34286363,44467043009 |
* To coin my own term, meaning to have rather few factors, compared to the size of the number. Is there a more technical term for this, and please don't say "relatively prime."
Divisor | Yes | No | Ratio | Expected |
---|---|---|---|---|
2 | 44 | 57 | 43.6% | 50.0% |
3 | 37 | 66 | 35.9% | 33.3% |
5 | 35 | 72 | 32.7% | 20.0% |
7 | 33 | 76 | 30.3% | 14.3% |
11 | 52 | 60 | 46.4% | 9.1% |
If the number of partitions were random, you would expect 1 in 11 totals to be divisible by 11, or 9.1%. Instead we have 46.4%.
Quote: TomG5, 7, 9, 11, 12, 15, 16, 18, 20, 21, 24, 25, 26, 29, 30, 32, 33, 35 -- that's how many integers there are for each number of digits in each partition (if that makes sense). There are five integers with one digit, seven with two, nine with three. The rate of growth is fairly predictable. Good estimates for the number of partitions of n can be done with very little computing power, if someone wants to try,
There is a formula, involving pi and e, of course, that is a very good predictor of number of partitions. However, there is nothing like finding exact patterns.
P(5x + 4) is always divisible by 5
P(7x + 5) is always divisible by 7
P(11x + 6) is always divisible by 11
Here are a couple more that were discovered later:
P(17303x + 237) is always divisible by 13
P(206839x + 839) is always divisible by 17
P(1977147619x + 815655) is always divisible by 19
Makes you suspect there is another identity for the next prime, 23, but we haven't found it yet.
Consider the 7 partitions of 5:
1-1-1-1-1
2-1-1-1
2-2-1, 3-1-1
4-1, 3-2
5
What is the terminology to describe the number of clumps or elements of a partition? I have been using "length," as in: the partitions listed above start with partitions of length 5, then length 4 and so on down to length 1. But I realize that is probably not the accepted term.
Quote: Wizard* To coin my own term, meaning to have rather few factors, compared to the size of the number. Is there a more technical term for this, and please don't say "relatively prime."
Especially as "relatively prime" refers to something completely different. (Two numbers are relatively prime if they do not share any prime factors, even if neither is prime. For example, 16 and 25 are relatively prime to each other. For that matter, any power of 2 and any odd number are relatively prime.)
More information on numbers of partitions than you probably want to know
Also, you wrote "partions" instead of "partitions" in your OP linking to wikipedia.
Speaking of numberphile, have you considered making videos like that? The only one I can think of is the video where you made BJ basic strategy in excel.
Quote: WizardTo respond to my last post, I noticed that quite often the number of partitions was evenly divisible by 11. Here is a count of how often the total partitions are divisible by 2, 3, 5, 7, and 11, starting with total equal to that divisor and up to as far as Excel would let me.
Divisor Yes No Ratio Expected 2 44 57 43.6% 50.0% 3 37 66 35.9% 33.3% 5 35 72 32.7% 20.0% 7 33 76 30.3% 14.3% 11 52 60 46.4% 9.1%
If the number of partitions were random, you would expect 1 in 11 totals to be divisible by 11, or 9.1%. Instead we have 46.4%.
That is interesting. What are the results for a divisor of 13?
I have taken all the primes from 2-1,000,000 and converted them into different bases/radices from 2-100+ and looked for frequency of integers in the digits (ignoring the first and last digit of each prime.) It is extraordinarily regular, with a digit frequency that has very little variance around the expected number. Given that as a background, I am surprised to see your large discrepancy in the frequency of divisor 11. It seems like it might be significant.
Quote: gordonm888What is the terminology to describe the number of clumps or elements of a partition? I have been using "length," as in: the partitions listed above start with partitions of length 5, then length 4 and so on down to length 1. But I realize that is probably not the accepted term.
If there's a term for it, I don't know what it is. The way my math works is I keep track of the maximum height in any given partition. For example, the number of partitions in 100 equals:
P(100) = P(1) + P(2) + ... + P(50) (these are for the cases where the height of the longest stack is 50 to 100) + P(51,49) + P(52,48) + ... P (100,1),
where P(x,y) = Number of partitions where x is the total items and y is the maximum height of a stack.
For example if the height of the largest stack is 30, then there are 70 left, but you can't have a stack higher than 30.
Just one way of getting the answer by brute force.
Quote: gordonm888What are the results for a divisor of 13?
Damn Excel doesn't handle big numbers very well, so my sample size is rather small:
Divisor | Yes | No | Ratio | Expected |
---|---|---|---|---|
2 | 44 | 57 | 43.6% | 50.0% |
3 | 37 | 66 | 35.9% | 33.3% |
5 | 35 | 72 | 32.7% | 20.0% |
7 | 33 | 76 | 30.3% | 14.3% |
11 | 52 | 60 | 46.4% | 9.1% |
13 | 4 | 109 | 3.5% | 7.7% |
So 13's are underrepresented. I think it is indeed significant how often 11 pops up and how often 13 does not.
I think I'll add more code to check the factorization for larger numbers. I can handle numbers up to 2^64 in C++. Projects like this make me jealous of the people who have Mathematica.
Quote:I have taken all the primes from 2-1,000,000 and converted them into different bases/radices from 2-100+ and looked for frequency of integers in the digits (ignoring the first and last digit of each prime.) It is extraordinarily regular, with a digit frequency that has very little variance around the expected number. Given that as a background, I am surprised to see your large discrepancy in the frequency of divisor 11. It seems like it might be significant.
Can you show me a table to illustrate what you mean?
Prime | Count in 2 to 405 | Ratio | Expected |
---|---|---|---|
2 | 181 | 44.8% | 50.0% |
3 | 139 | 34.4% | 33.3% |
5 | 139 | 34.4% | 20.0% |
7 | 101 | 25.0% | 14.3% |
11 | 108 | 26.7% | 9.1% |
13 | 25 | 6.2% | 7.7% |
17 | 17 | 4.2% | 5.9% |
23 | 18 | 4.5% | 4.3% |
29 | 11 | 2.7% | 3.4% |
This shows a huge surplus of total partitions divisible by 5, 7, and 11, especially 11. You may recall these are the same primes in the Ramanujan identities. Very interesting...
- Semi-prime
- k-almost prime
- Sphenic number
https://en.wikipedia.org/wiki/Table_of_prime_factors?wprov=sfti1
Can you run your code for partitions of 10, 11, 12, 13, 14 and 15 and PM or email the lists to me please? I don't have the software to run the code myself.
Quote: WizardCan you show me a table to illustrate what you mean?
Sorry, I spent some time looking through my many spreadsheets and I didn't find the work that I had mentioned. I did find some spreadsheets with the primes from 3-19,997 converted into prime number radices (bases) so I used them to produce the (modest) results shown in the table below.
Explanation: This table is the frequency of digits (as shown in the first column) in prime numbers converted into base 2, 5, 7,and 11 - in which I only count the digits as they appear in the "2nd to last digit" and "3rd to last digit" of each prime number.
So in the 2nd row I am counting the frequency of digits 1-4 as they appear in all the primes from 29-19997, when those primes are written in Base 5 -and only counting the digits in the 5^3 and 5^2 columns of the prime numbers.
As an example the prime number 19,917 is written in base 5 as 1114202, so I count one "2" and one "0" as shown in bold in the number.
Digits | Base 3: 11-19997 | Base 5: 29-19997 | Base 7: 53-19997 | Base 11: 127-19997 |
---|---|---|---|---|
0 | 1492 | 885 | 661 | 410 |
1 | 1503 | 917 | 627 | 409 |
2 | 1517 | 916 | 633 | 394 |
3 | 898 | 634 | 412 | |
4 | 885 | 649 | 396 | |
5 | 641 | 404 | ||
6 | 645 | 414 | ||
7 | 417 | |||
8 | 423 | |||
9 | 388 | |||
10 | 393 |
This was just a quick effort to show the kind of work that I had done. The original work was on every prime less than 1,000,000 and the variance in the calculated frequencies of various digits seemed pretty damn small, as I remember it.
Quote: rsactuaryA favor of the Wiz:
Can you run your code for partitions of 10, 11, 12, 13, 14 and 15 and PM or email the lists to me please? I don't have the software to run the code myself.
Does this table not answer your question?
n | Partitions of n | Factorization of Partitions of n |
---|---|---|
2 | 2 | 2 |
3 | 3 | 3 |
4 | 5 | 5 |
5 | 7 | 7 |
6 | 11 | 11 |
7 | 15 | 3,5 |
8 | 22 | 2,11 |
9 | 30 | 2,3,5 |
10 | 42 | 2,3,7 |
11 | 56 | 2,2,2,7 |
12 | 77 | 7,11 |
13 | 101 | 101 |
14 | 135 | 3,3,3,5 |
15 | 176 | 2,2,2,2,11 |
16 | 231 | 3,7,11 |
17 | 297 | 3,3,3,11 |
18 | 385 | 5,7,11 |
19 | 490 | 2,5,7,7 |
20 | 627 | 3,11,19 |
21 | 792 | 2,2,2,3,3,11 |
22 | 1002 | 2,3,167 |
23 | 1255 | 5,251 |
24 | 1575 | 3,3,5,5,7 |
25 | 1958 | 2,11,89 |
26 | 2436 | 2,2,3,7,29 |
27 | 3010 | 2,5,7,43 |
28 | 3718 | 2,11,13,13 |
29 | 4565 | 5,11,83 |
30 | 5604 | 2,2,3,467 |
31 | 6842 | 2,11,311 |
32 | 8349 | 3,11,11,23 |
33 | 10143 | 3,3,7,7,23 |
34 | 12310 | 2,5,1231 |
35 | 14883 | 3,11,11,41 |
36 | 17977 | 17977 |
37 | 21637 | 7,11,281 |
38 | 26015 | 5,11,11,43 |
39 | 31185 | 3,3,3,3,5,7,11 |
40 | 37338 | 2,3,7,7,127 |
41 | 44583 | 3,7,11,193 |
42 | 53174 | 2,11,2417 |
43 | 63261 | 3,3,3,3,11,71 |
44 | 75175 | 5,5,31,97 |
45 | 89134 | 2,41,1087 |
46 | 105558 | 2,3,73,241 |
47 | 124754 | 2,7,7,19,67 |
48 | 147273 | 3,7,7013 |
49 | 173525 | 5,5,11,631 |
50 | 204226 | 2,11,9283 |
51 | 239943 | 3,11,11,661 |
52 | 281589 | 3,7,11,23,53 |
53 | 329931 | 3,3,7,5237 |
54 | 386155 | 5,7,11,17,59 |
55 | 451276 | 2,2,7,71,227 |
56 | 526823 | 11,47,1019 |
57 | 614154 | 2,3,102359 |
58 | 715220 | 2,2,5,11,3251 |
59 | 831820 | 2,2,5,11,19,199 |
60 | 966467 | 17,139,409 |
61 | 1121505 | 3,5,7,11,971 |
62 | 1300156 | 2,2,11,13,2273 |
63 | 1505499 | 3,113,4441 |
64 | 1741630 | 2,5,11,71,223 |
65 | 2012558 | 2,1006279 |
66 | 2323520 | 2,2,2,2,2,2,5,53,137 |
67 | 2679689 | 1181,2269 |
68 | 3087735 | 3,5,7,7,4201 |
69 | 3554345 | 5,641,1109 |
70 | 4087968 | 2,2,2,2,2,3,97,439 |
71 | 4697205 | 3,5,313147 |
72 | 5392783 | 11,139,3527 |
73 | 6185689 | 23,131,2053 |
74 | 7089500 | 2,2,5,5,5,11,1289 |
75 | 8118264 | 2,2,2,3,7,11,23,191 |
76 | 9289091 | 7,1327013 |
77 | 10619863 | 10619863 |
78 | 12132164 | 2,2,11,103,2677 |
79 | 13848650 | 2,5,5,173,1601 |
80 | 15796476 | 2,2,3,3,227,1933 |
81 | 18004327 | 11,1636757 |
82 | 20506255 | 5,7,7,7,11,1087 |
83 | 23338469 | 7,11,303097 |
84 | 26543660 | 2,2,5,11,13,9281 |
85 | 30167357 | 11,11,249317 |
86 | 34262962 | 2,23,37,41,491 |
87 | 38887673 | 11,3535243 |
88 | 44108109 | 3,3,83,137,431 |
89 | 49995925 | 5,5,7,7,40813 |
90 | 56634173 | 2473,22901 |
91 | 64112359 | 29,373,5927 |
92 | 72533807 | 3371,21517 |
93 | 82010177 | 59,1390003 |
94 | 92669720 | 2,2,2,5,11,13,17,953 |
95 | 104651419 | 283,369793 |
96 | 118114304 | 2,2,2,2,2,2,2,2,2,2,2,7,7,11,107 |
97 | 133230930 | 2,3,5,7,29,131,167 |
98 | 150198136 | 2,2,2,11,1706797 |
99 | 169229875 | 5,5,5,1353839 |
100 | 190569292 | 2,2,43,59,89,211 |
101 | 214481126 | 2,31,3459373 |
102 | 241265379 | 3,2423,33191 |
103 | 271248950 | 2,5,5,7,774997 |
104 | 304801365 | 3,5,11,1847281 |
105 | 342325709 | 11,43,43,16831 |
106 | 384276336 | 2,2,2,2,3,8005757 |
107 | 431149389 | 3,11,173,75521 |
108 | 483502844 | 2,2,11,10988701 |
109 | 541946240 | 2,2,2,2,2,2,2,5,11,23,3347 |
110 | 607163746 | 2,7,4049,10711 |
111 | 679903203 | 3,7,67,483229 |
112 | 761002156 | 2,2,190250539 |
113 | 851376628 | 2,2,212844157 |
114 | 952050665 | 5,193,986581 |
115 | 1064144451 | 3,61,67,229,379 |
116 | 1188908248 | 2,2,2,11,11,157,7823 |
117 | 1327710076 | 2,2,7,7,11,615821 |
118 | 1482074143 | 11,197,827,827 |
119 | 1653668665 | 5,11,30066703 |
120 | 1844349560 | 2,2,2,5,47,981037 |
121 | 2056148051 | 461,4460191 |
122 | 2291320912 | 2,2,2,2,9013,15889 |
123 | 2552338241 | 79,32308079 |
124 | 2841940500 | 2,2,3,5,5,5,7,31,8731 |
125 | 3163127352 | 2,2,2,3,7,11,59,67,433 |
126 | 3519222692 | 2,2,89,379,26083 |
127 | 3913864295 | 5,11,67,1062107 |
128 | 4351078600 | 2,2,2,5,5,11,17,317,367 |
129 | 4835271870 | 2,3,3,5,11,13,157,2393 |
130 | 5371315400 | 2,2,2,5,5,11,157,15551 |
131 | 5964539504 | 2,2,2,2,7,7,7,11,29,3407 |
132 | 6620830889 | 6620830889 |
133 | 7346629512 | 2,2,2,3,3,1319,77359 |
134 | 8149040695 | 5,17,89,1077203 |
135 | 9035836076 | 2,2,59,569,67289 |
136 | 10015581680 | 2,2,2,2,5,13,31,41,7577 |
137 | 11097645016 | 2,2,2,17,1367,59693 |
138 | 12292341831 | 3,3,7,7,11,733,3457 |
139 | 13610949895 | 5,79,34458101 |
140 | 15065878135 | 5,7,11,39132151 |
141 | 16670689208 | 2,2,2,29,31,991,2339 |
142 | 18440293320 | 2,2,2,3,3,5,127,403331 |
143 | 20390982757 | 7589,2686913 |
144 | 22540654445 | 5,5807,776327 |
145 | 24908858009 | 7,7,53,73,83,1583 |
146 | 27517052599 | 53197,517267 |
147 | 30388671978 | 2,3,7,24151,29959 |
148 | 33549419497 | 11,73,41780099 |
149 | 37027355200 | 2,2,2,2,2,2,5,5,11,11,11,17387 |
150 | 40853235313 | 11,17,197,1108967 |
151 | 45060624582 | 2,3,7510104097 |
152 | 49686288421 | 7,11,751,859223 |
153 | 54770336324 | 2,2,11,34513,36067 |
154 | 60356673280 | 2,2,2,2,2,2,2,2,5,37,1274423 |
155 | 66493182097 | 19,8087,432749 |
156 | 73232243759 | 463,1777,89009 |
157 | 80630964769 | 80630964769 |
158 | 88751778802 | 2,79,691,853,953 |
159 | 97662728555 | 5,7,29,67,1436111 |
160 | 107438159466 | 2,3,3,11,443,1224869 |
161 | 118159068427 | 797,148254791 |
162 | 129913904637 | 3,3,11,127,10332769 |
163 | 142798995930 | 2,3,5,4759966531 |
164 | 156919475295 | 3,3,5,11,14867,21323 |
165 | 172389800255 | 5,313,1543,71389 |
166 | 189334822579 | 7,7,37,53,1277,1543 |
167 | 207890420102 | 2,19,73,503,148991 |
168 | 228204732751 | 228204732751 |
169 | 250438925115 | 3,3,3,5,1855103149 |
170 | 274768617130 | 2,5,7,47,83516297 |
171 | 301384802048 | 2,2,2,2,2,2,2,2,11,11,1609,6047 |
172 | 330495499613 | 103,2351,1364821 |
173 | 362326859895 | 3,5,7,11,13,37,652189 |
174 | 397125074750 | 2,5,5,5,103,1627,9479 |
175 | 435157697830 | 2,5,43515769783 |
176 | 476715857290 | 2,5,443,107610803 |
177 | 522115831195 | 5,7,97,153789641 |
178 | 571701605655 | 3,5,17,2241967081 |
179 | 625846753120 | 2,2,2,2,2,5,277,3467,4073 |
180 | 684957390936 | 2,2,2,3,7,7,13,59,643,1181 |
181 | 749474411781 | 3,249824803927 |
182 | 819876908323 | 11,23,27967,115873 |
183 | 896684817527 | 61,293,50169799 |
184 | 980462880430 | 2,5,11,107,83301859 |
185 | 1071823774337 | 3469,6653,46441 |
186 | 1171432692373 | 1171432692373 |
187 | 1280011042268 | 2,2,7,7,18713,348991 |
188 | 1398341745571 | 1398341745571 |
189 | 1527273599625 | 3,3,3,3,5,5,5,61,127,19471 |
190 | 1667727404093 | 317,7283,722363 |
191 | 1820701100652 | 2,2,3,7,11171,1940293 |
192 | 1987276856363 | 23,503,171776027 |
193 | 2168627105469 | 3,11,71,269,3440807 |
194 | 2366022741845 | 5,7,7,521,18535961 |
195 | 2580840212973 | 3,11,78207279181 |
196 | 2814570987591 | 3,11,89,958314943 |
197 | 3068829878530 | 2,5,13,43,257,2136131 |
198 | 3345365983698 | 2,3,3,185853665761 |
199 | 3646072432125 | 3,3,5,5,5,3240953273 |
200 | 3972999029388 | 2,2,3,331083252449 |
201 | 4328363658647 | 7,19,23,47,4441,6779 |
202 | 4714566886083 | 3,837673,1876057 |
203 | 5134205287973 | 151,34001359523 |
204 | 5590088317495 | 5,11,19,5349366811 |
205 | 6085253859260 | 2,2,5,304262692963 |
206 | 6622987708040 | 2,2,2,5,11,15052244791 |
207 | 7206841706490 | 2,3,3,5,829,5399,17891 |
208 | 7840656226137 | 3,7,373364582197 |
209 | 8528581302375 | 3,5,5,5,19,197,2083,2917 |
210 | 9275102575355 | 5,487,1091,3491363 |
211 | 10085065885767 | 3,17,61,227,14280811 |
212 | 10963707205259 | 10963707205259 |
213 | 11916681236278 | 2,7,13,31,79,131,409,499 |
214 | 12950095925895 | 3,5,2351,7573,48491 |
215 | 14070545699287 | 7,7,11,11,23497,100999 |
216 | 15285151248481 | 15285151248481 |
217 | 16601598107914 | 2,2140069,3878753 |
218 | 18028182516671 | 53,340154387107 |
219 | 19573856161145 | 5,11,13,313,87463331 |
220 | 21248279009367 | 3,7082759669789 |
221 | 23061871173849 | 3,223,138283,249287 |
222 | 25025873760111 | 3,7,17,1259,55679497 |
223 | 27152408925615 | 3,5,23,353,4801,46439 |
224 | 29454549941750 | 2,5,5,5,16301,7227667 |
225 | 31946390696157 | 3,7,37,97,2887,146819 |
226 | 34643126322519 | 3,11,13,13,79,78630193 |
227 | 37561133582570 | 2,5,13,173,449,3719657 |
228 | 40718063627362 | 2,11,23,80470481477 |
229 | 44132934884255 | 5,7,7,191,943112189 |
230 | 47826239745920 | 2,2,2,2,2,2,2,5,109843,680321 |
231 | 51820051838712 | 2,2,2,3,59,59,620272573 |
232 | 56138148670947 | 3,7,32009,83515423 |
233 | 60806135438329 | 307,347,9749,58549 |
234 | 65851585970275 | 5,5,7,376294776973 |
235 | 71304185514919 | 7,10186312216417 |
236 | 77195892663512 | 2,2,2,7,7,263,748776797 |
237 | 83561103925871 | 11,11,13,17,677,4615703 |
238 | 90436839668817 | 3,7591,3971230829 |
239 | 97862933703585 | 3,5,1114697,5852887 |
240 | 105882246722733 | 3,13,13,83,2516153293 |
241 | 114540884553038 | 2,57270442276519 |
242 | 123888443077259 | 7,31,570914484227 |
243 | 133978259344888 | 2,2,2,7,7,97,5783,609289 |
244 | 144867692496445 | 5,14813,1955953453 |
245 | 156618412527946 | 2,4007,19543101139 |
246 | 169296722391554 | 2,431,18433,10654799 |
247 | 182973889854026 | 2,77899,1174430287 |
248 | 197726516681672 | 2,2,2,11,79,28441673861 |
249 | 213636919820625 | 3,3,3,5,5,5,5,7,277,6529121 |
250 | 230793554364681 | 3,7,11,10037,99542323 |
251 | 249291451168559 | 887,281050114057 |
252 | 269232701252579 | 4177,64455997427 |
253 | 290726957916112 | 2,2,2,2,53,73,4696416353 |
254 | 313891991306665 | 5,17,643,9649,595207 |
255 | 338854264248680 | 2,2,2,5,631,859,1429,10937 |
256 | 365749566870782 | 2,91381,2001234211 |
257 | 394723676655357 | 3,7,18796365555017 |
258 | 425933084409356 | 2,2,545863,195073253 |
259 | 459545750448675 | 3,5,5,11,234197,2378447 |
260 | 495741934760846 | 2,31,53,150864861461 |
261 | 534715062908609 | 11,41,349,20389,166619 |
262 | 576672674947168 | 2,2,2,2,2,19,439,2160534839 |
263 | 621837416509615 | 5,419,29867,9938051 |
264 | 670448123060170 | 2,5,7,7,13,41,1907,1346143 |
265 | 722760953690372 | 2,2,419,8167,52802941 |
266 | 779050629562167 | 3,3,3,28853727020821 |
267 | 839611730366814 | 2,3,53,6857,385050089 |
268 | 904760108316360 | 2,2,2,3,3,5,2513222523101 |
269 | 974834369944625 | 5,5,5,173,45079046009 |
270 | 1050197489931117 | 3,11,83,47309,8104667 |
271 | 1131238503938606 | 2,7,3041,26571111569 |
272 | 1218374349844333 | 11,317333,349038091 |
273 | 1312051800816215 | 5,499,2003,9829,26711 |
274 | 1412749565173450 | 2,5,5,7,7,173,4327,770311 |
275 | 1520980492851175 | 5,5,60839219714047 |
276 | 1637293969337171 | 167,1777,1931,2857199 |
277 | 1762278433057269 | 3,3,29,6752024647729 |
278 | 1896564103591584 | 2,2,2,2,2,3,7,7,7,23,2504230711 |
279 | 2040825852575075 | 5,5,373,218855319311 |
280 | 2195786311682516 | 2,2,7,389,3853,52321891 |
281 | 2362219145337711 | 3,11,37,983809,1966499 |
282 | 2540952590045698 | 2,29,59,619,1199570861 |
283 | 2732873183547535 | 5,7,7,53,210463857031 |
284 | 2938929793929555 | 3,5,790189,247951633 |
285 | 3160137867148997 | 7,7,7,52517,175433287 |
286 | 3397584011986773 | 3,3,3,7,43,547,764280217 |
287 | 3652430836071053 | 73,50033299124261 |
288 | 3925922161489422 | 2,3,103,2162249,2937971 |
289 | 4219388528587095 | 3,5,263,1069553492671 |
290 | 4534253126900886 | 2,3,227,9349,356093047 |
291 | 4872038056472084 | 2,2,1218009514118021 |
292 | 5234371069753672 | 2,2,2,7,7,11,97,223,56118901 |
293 | 5622992691950605 | 5,7087043,158683747 |
294 | 6039763882095515 | 5,11,13,73,1187,7027,13873 |
295 | 6486674127079088 | 2,2,2,2,461,1033,851335711 |
296 | 6965850144195831 | 3,7,83,5783,691072399 |
297 | 7479565078510584 | 2,2,2,3,3,3413,6971,4366289 |
298 | 8030248384943040 | 2,2,2,2,2,2,3,5,4801,1742312449 |
299 | 8620496275465025 | 5,5,7,17,2897645806879 |
300 | 9253082936723602 | 2,137,1021,33075784213 |
301 | 9930972392403501 | 3,6491,509986771037 |
302 | 10657331232548839 | 10657331232548839 |
303 | 11435542077822104 | 2,2,2,11,53,2451874373461 |
304 | 12269218019229465 | 3,5,7,257,617,1249,589993 |
305 | 13162217895057704 | 2,2,2,11,117101,1277279083 |
306 | 14118662665280005 | 5,7,23,67,79,2357,1405841 |
307 | 15142952738857194 | 2,3,3,41,607,33803799259 |
308 | 16239786535829663 | 11149,68473,21272819 |
309 | 17414180133147295 | 5,12650773,275306183 |
310 | 18671488299600364 | 2,2,181,503,51271070537 |
311 | 20017426762576945 | 5,13,31,199,33479,1491103 |
312 | 21458096037352891 | 7,15493,217027,911683 |
313 | 23000006655487337 | 7,7,7,41,1635497877799 |
314 | 24650106150830490 | 2,3,3,5,11,59,422018595289 |
315 | 26415807633566326 | 2,691,1609,11879544977 |
316 | 28305020340996003 | 3,3,11,113,233,10859101993 |
317 | 30326181989842964 | 2,2,557,44111,308571383 |
318 | 32488293351466654 | 2,13,3881,321965922259 |
319 | 34800954869440830 | 2,3,5,7,165718832711623 |
320 | 37274405776748077 | 7,109,48852432210679 |
321 | 39919565526999991 | 7,5702795075285713 |
322 | 42748078035954696 | 2,2,2,3,37,48139727517967 |
323 | 45772358543578028 | 2,2,47279,415343,582731 |
324 | 49005643635237875 | 5,5,5,17,19,1213762071461 |
325 | 52462044228828641 | 11,79,1013,38749,1537997 |
326 | 56156602112874289 | 13,701,6162251960153 |
327 | 60105349839666544 | 2,2,2,2,7,7,17,79,277,283,728207 |
328 | 64325374609114550 | 2,5,5,73,17623390303867 |
329 | 68834885946073850 | 2,5,5,523,661673,3978263 |
330 | 73653287861850339 | 3,24551095953950113 |
331 | 78801255302666615 | 5,463,701,1033,1069,43973 |
332 | 84300815636225119 | 29,31,151,37447,16583573 |
333 | 90175434980549623 | 29,67,149,2819,110492831 |
334 | 96450110192202760 | 2,2,2,5,7,7,43,61,86981,215687 |
335 | 103151466321735325 | 5,5,13,12161,26098933241 |
336 | 110307860425292772 | 2,2,3,11,41,341743,59641567 |
337 | 117949491546113972 | 2,2,20533,1436096668121 |
338 | 126108517833796355 | 5,11,13,176375549417897 |
339 | 134819180623301520 | 2,2,2,2,3,5,561746585930423 |
340 | 144117936527873832 | 2,2,2,3,3,3,109,6121217147803 |
341 | 154043597379576030 | 2,3,5,7,7,1079531,97071379 |
342 | 164637479165761044 | 2,2,3,3,19,8761,27473812231 |
343 | 175943559810422753 | 23,76253,178897,560771 |
344 | 188008647052292980 | 2,2,5,10937,617657,1391561 |
345 | 200882556287683159 | 79,113,1156801,19452617 |
346 | 214618299743286299 | 7,5923,28069,184416611 |
347 | 229272286871217150 | 2,3,3,3,5,5,11,2311,9257,721697 |
348 | 244904537455382406 | 2,3,7,17,23,14913197993873 |
349 | 261578907351144125 | 5,5,5,23,523,173965521557 |
350 | 279363328483702152 | 2,2,2,3,47,349,997,711770053 |
351 | 298330063062758076 | 2,2,3,7,106783,33259492333 |
352 | 318555973788329084 | 2,2,3391,382231,61442951 |
353 | 340122810048577428 | 2,2,3,239,118592332652921 |
354 | 363117512048110005 | 3,5,29,47,67,971,273002137 |
355 | 387632532919029223 | 7,24113,2296523706353 |
356 | 413766180933342362 | 2,101,3557,15199,37888267 |
357 | 441622981929358437 | 3,13,13,871051246408991 |
358 | 471314064268398780 | 2,2,3,3,3,5,11,11,13,401,1383705109 |
359 | 502957566506000020 | 2,2,5,101,349,104459,6829811 |
360 | 536679070310691121 | 11,14423,3382722484357 |
361 | 572612058898037559 | 3,3,131,485676046563221 |
362 | 610898403751884101 | 7,7,4793,2601150503293 |
363 | 651688879997206959 | 3,433,4793,104670363037 |
364 | 695143713458946040 | 2,2,2,5,43,4171819,96877003 |
365 | 741433159884081684 | 2,2,3,2137,89491,323077621 |
366 | 790738119649411319 | 790738119649411319 |
367 | 843250788562528427 | 599,1237,1138047093529 |
368 | 899175348396088349 | 73,101,179,382429,1781543 |
369 | 958728697912338045 | 3,5,7,11,751,1105283803889 |
370 | 1022141228367345362 | 2,49556849,10312814969 |
371 | 1089657644424399782 | 2,71,7673645383270421 |
372 | 1161537834849962850 | 2,3,3,5,5,7,547,757,890511641 |
373 | 1238057794119125085 | 3,5,683,722639,167227447 |
374 | 1319510599727473500 | 2,2,3,5,5,5,983,1831,5101,95813 |
375 | 1406207446561484054 | 2,3347,210069830678441 |
376 | 1498478743590581081 | 7,7,431,1949,66863,544477 |
377 | 1596675274490756791 | 2389,16197169,41263051 |
378 | 1701169427975813525 | 5,5,197,331031,1043452463 |
379 | 1812356499739472950 | 2,5,5,73,127,5081,769480909 |
380 | 1930656072350465812 | 2,2,11,43878547098874223 |
381 | 2056513475336633805 | 3,5,227,2801473,215589697 |
382 | 2190401332423765131 | 3,11,66375797952235307 |
383 | 2332821198543892336 | 2,2,2,2,7,7,53,227,177043,1396963 |
384 | 2484305294265418180 | 2,2,5,31,997,4019001026087 |
385 | 2645418340688763701 | 43,11738107,5241165101 |
386 | 2816759503217942792 | 2,2,2,67,2333,8963,12421,20233 |
387 | 2998964447736452194 | 2,131,1607,14149,14449,34841 |
388 | 3192707518433532826 | 2,1596353759216766413 |
389 | 3398704041358160275 | 5,5,13,43,20921,11624628749 |
390 | 3617712763867604423 | 7,7,25439,2902271029993 |
391 | 3850538434667429186 | 2,11,37717,4640466482039 |
392 | 4098034535626594791 | 3,3,137,167,619,32151809299 |
393 | 4361106170762284114 | 2,367,569,1283,21487,378779 |
394 | 4640713124699623515 | 3,5,17,359,78401,646589267 |
395 | 4937873096788191655 | 5,6553,46451,3244402177 |
396 | 5253665124416975163 | 3,3,49789639,11724137413 |
397 | 5589233202595404488 | 2,2,2,7,23,31,37,3783318894683 |
398 | 5945790114707874597 | 3,3,660643346078652733 |
399 | 6324621482504294325 | 3,3,5,5,191,147169784351467 |
400 | 6727090051741041926 | 2,23869,140916880718527 |
401 | 7154640222653942321 | 71,2381,151273,279774827 |
402 | 7608802843339879269 | 3,11,7151,32243012604043 |
403 | 8091200276484465581 | 7,3911,10093,29282410321 |
404 | 8603551759348655060 | 2,2,5,7,61453941138204679 |
405 | 9147679068859117602 | 2,3,34286363,44467043009 |
Quote: gordonm888Sorry, I spent some time looking through my many spreadsheets and I didn't find the work that I had mentioned. I did find some spreadsheets with the primes from 3-19,997 converted into prime number radices (bases) so I used them to produce the (modest) results shown in the table below...
Thank you. I can't think of a good comment offhand.
Partitions in a linear sequence
It is well known that if you have 5 objects that you can partition them into these seven arrangements:
1-1-1-1-1; 2-1-1-1; 2-2-1; 3-1-1; 3-2; 4-1; 5
Now let’s consider the 13 ranks in a standard deck of cards, and for the moment let’s define an Ace to be a high card only. (Equivalently, we could define an ace as a low card only with identical results)
Given: All the various combinations of 5 cards of different rank, and ignoring the suits of the cards
Defining: a 5 card straight as 5 consecutive ranks, a 4 card straight as 4 consecutive ranks, etc. ranging down to a 1-card straight which is a card that has a rank with both adjacent ranks empty, let’s look at some combinations of 5 different ranks
Ex: QJ962. Graphically, this hand looks like this: __QJ_9__6___2. It is easy to see that it has one 2- card straight and three 1-card straights. An obvious way to label this hand (from a connect-ness or straightness point of view) is 2-1-1-1
Ex: T7654. Graphically, this hand is ____T__7654__. It is one 4-card straight and one 1-card straight, which we label as 4-1.
Clearly, all the “straight patterns” are equivalent to the partitions of 5, because we are literally filling 5 of 13 ‘slots’ and noting how the 5 objects are partitioned.
Again, in the cards analogy I am defining aces as either high or low, but not both. However, we can define a mathematical relationship that is more general than cards:
Define a linear string(or array) of 13 slots such that each of the 11 interior slots is each connected to two adjacent slots and such that the two end slots are only connected to one adjacent slot each. Now consider every possible combination of ways to populate the 13 slots with 5 objects. There will be c(13,5) =1287 different combinations of ways to populate the 13 slots with 5 objects.
Surprisingly, given this definition, we can calculate the number of combinations that correspond to the various partitions of 5, equivalently we say that we can calculate the frequencies or probability densities of the partitions of 5 when in a linear string (without loops) of 13 spaces.
Case | 1-1-1-1-1 | 2-1-1-1 | 2-2-1 | 3-1-1 | 3-2 | 4-1 | 5 |
---|---|---|---|---|---|---|---|
5 into 13, line | 126 | 504 | 252 | 252 | 72 | 72 | 9 |
Of course, there is nothing fundamental about having a string length of 13. Here are some combination frequencies for partitions of 5 when the length of the string is 8-13 available slots.
Case | 1-1-1-1-1 | 2-1-1-1 | 2-2-1 | 3-1-1 | 3-2 | 4-1 | 5 |
---|---|---|---|---|---|---|---|
5 into 13, line | 126 | 504 | 252 | 252 | 72 | 72 | 9 |
5 into 12, line | 56 | 280 | 168 | 168 | 56 | 56 | 8 |
5 into 11, line | 21 | 140 | 105 | 105 | 42 | 42 | 7 |
5 into 10, line | 6 | 62 | 58 | 60 | 30 | 30 | 6 |
5 into 9, line | 1 | 20 | 30 | 30 | 20 | 20 | 5 |
5 into 8, line | 0 | 4 | 12 | 12 | 12 | 12 | 4 |
A couple of observations based on the above table:
1. The partitions 4-1 and 3-2 appear to be equally likely when 5 objects are placed in a linear string.
2. The “5 into 8” case shows an uncanny symmetry in the number of combinations for the partitions. I have yet to see anything that matches it in the various cases I have analyzed.
Partitions in a Closed Linear String
Consider the game Clock Solitaire where all 13 ranks are arrayed a circle. Further, define the existence of a “straight” in this circular configuration to include KA2 as a 3-card straight, QKA23 as a 5-card straight, etc. More generally consider a closed linear string such that the ends of the string are adjacent (as in a loop or circle) and such that every grid spot in the string has two connections; i.e. no ends.
Given this configuration, the partition frequencies are different as is shown in the table below.
Case | 1-1-1-1-1 | 2-1-1-1 | 2-2-1 | 3-1-1 | 3-2 | 4-1 | 5 |
---|---|---|---|---|---|---|---|
5 into 13, open line | 141 | 497 | 244 | 252 | 72 | 72 | 9 |
5 into 13, closed (loop) line | 92 | 455 | 272 | 274 | 91 | 90 | 13 |
The difference in these two cases has been illustrated by geometric differences in the configuration of the linear array, but the essential differences in the case arise not from geometry but from the definitions of adjacency or connect-ness.
Partitions of 3
The number 3 has the following three partitions: 1-1-1, 2-1, and 3. It’s a very simple set of partitions, but a good starting point for becoming familiar with this kind of analysis For game analysts, remembering that Ace is either high only or low only, this is “You are dealt 3 unpaired cards, how often do you have a 3-card straight, a 2-card straight, or no connected ranks at all (1-1-1).”
Case | 1-1-1 | 2-1 | 3 | Total |
---|---|---|---|---|
3 of 13, line | 165 | 110 | 11 | 286 |
3 of 12, line | 120 | 90 | 10 | 220 |
3 of 11, line | 84 | 72 | 9 | 165 |
3 of 10, line | 56 | 56 | 8 | 120 |
3 of 9, line | 35 | 42 | 7 | 84 |
3 of 8, line | 20 | 30 | 6 | 56 |
3 of 7, line | 10 | 20 | 5 | 35 |
3 of 6, line | 4 | 12 | 4 | 20 |
Now, let’s look at the those same results for partitions of three when the line is a closed loop (no end points)
Case | 1-1-1 | 2-1 | 3 | Total |
---|---|---|---|---|
3 of 13, closed loop | 157 | 116 | 13 | 286 |
3 of 12, closed loop | 112 | 97 | 12 | 220 |
3 of 11, closed loop | 77 | 77 | 11 | 165 |
3 of 10, closed loop | 50 | 60 | 10 | 120 |
3 of 9, closed loop | 30 | 45 | 9 | 84 |
3 of 8, closed loop | 16 | 32 | 8 | 56 |
3 of 7, closed loop | 7 | 21 | 7 | 35 |
3 of 6, closed loop | 2 | 12 | 6 | 20 |
There appears to be a lot of symmetry in this closed loop version of partitions of 3. At this point, I have not analyzed closed loop systems very much because I have become intrigued by some aspects of possible applications of the “open line” partition frequencies.
Partitions of 4.
The number 4 has the following five partitions: 1-1-1-1, 2-1-1, 2-2, 3-1, and 4. Just for chuckles, let’s see the frequencies of these partitions for open linear arrays of length 8-13.
Case | 1-1-1-1 | 2-1-1 | 2-2 | 3-1 | 4 | Total |
---|---|---|---|---|---|---|
4 of 13, line | 210 | 360 | 45 | 90 | 10 | 715 |
4 of 12, line | 126 | 252 | 36 | 72 | 9 | 495 |
4 of 11, line | 70 | 168 | 28 | 56 | 8 | 330 |
4 of 10, line | 35 | 105 | 21 | 42 | 7 | 210 |
4 of 9, line | 15 | 60 | 15 | 30 | 6 | 126 |
4 of 8, line | 5 | 30 | 10 | 20 | 5 | 70 |
I always like to look for patterns in numbers, look for primes and special numbers. But when I first calculated these partition frequencies/combinations they frustrated me. The only prime numbers are trivial. I learned to dig into them deeper, which I’ll discuss later in the next few posts.
I will explain an efficient way of calculating the frequency of any partition of the number m when chosen from an open linear array of n objects.
Let me define an example based on card games. Example: You are designing a bonus payout for a card game in which a player is dealt 7 cards and in which the Ace counts only as a high or low card and in which you are ignoring flushes. You want to evaluate a bonus payout for the player when his 7-card hand has no pairs and has two straights that are exactly 3-cards long. There are c(13,7) = 1716 possible combinations of 7 ranks, but how often will 7 cards of different ranks be partitioned into a 3-3-1 partition?
In order to implement the methodology I will describe, we must define for any given partition a TOTAL, a LENGTH and the NUMBER OF PERMUTATIONS
For 3-3-1, The total is 3+3+1=7. The length is 3, because this partition has 3 elements or clumps. And the number of permutations is 3, because it can be sequenced as followed: 3-3-1; 3-1-3; and 1-3-3.
Of specific importance to this calculation is the partition 3-3-1 has 3 permutations.
The next step is to examine the partition of the spaces between the 3 substrings that make up 3-3-1. I call this “partitioning the void.” When selecting 7 objects from a total of 13, you can define the 7 objects that were selected equally well by defining the 6 objects that you have not selected. When picking 7 card ranks from 13, we can equally well think of this as defining 6 card ranks that are NOT SELECTED. This is the reason that c(13,7) =c(13,6) and more generally, that
Now, given 7 selected from 13, and given the 7 objects will be partitioned as 3-3-1, we know that there must be 6 objects that were not selected and the 6 unselected objects must have a partition that has a length in the range of 2-4. Clearly, the unselected objects must have at least two ‘clumps ‘ so as to divide the 7 objects into three clumps. Similarly, if the 6 unselected objects were partitioned into 5 or more clumps (2-1-1-1, or 1-1-1-1-1-1) they would have to divide the 7 selected objects into more than 3 clumps.
So given an open linear string of n objects and selecting m objects with a partition of length l, the unselected objects must total (n-m) and be arrayed as a partition of (n-m) with length in the rangel -1 to l+1.
For our example, which involves 7 ranks selected from 13 and arrayed as a partition of 3-3-1, let’s look at the partitions of 6. We’ll order them by their length:
l=5: 2-1-1-1-1
l=4: 3-1-1-1; 2-2-1-1
l=3: 4-1-1; 3-2-1; 2-2-2
l=2: 5-1; 4-2; 3-3
l=1: 6
For our example of 7 ranks selected from 13 and arrayed as a partition of 3-3-1, the 6 unselected ranks must be partitioned as either 3-1-1-1; 2-2-1-1, 4-1-1; 3-2-1; 2-2-2, 5-1; 4-2; 3-3 because these are all the possible partitions of 6 that have a length of 2-4.
Now, I define a parameter that will be useful in some applications.
p(n,l) = the sum of the number of permutations for all partitions of n with length l.
Example p(6,3) is the sum of number of permutations for all partitions of 6 with length =3. Referring to the list above we have:
4-1-1 which has 3 permutations
3-2-1 which has 6 permutations
2-2-2 which has 1 permutation
So, p(6,3) = 3+6+1 =10.
Similarly, p(6,6)=1; p(6,5)=5; p(6,4)=10: p(6,2)=5 and p(6,1)=1.
The number of combinations of 7 ranks picked out of 13 that have a partition of 3-3-1 I is the product:
So, when selecting 7 ranks out of 13 (and restricting the ace to be either high or low) the 7 ranks will be partitioned as 3-3-1 in 105 of 1716 possible combinations.
It is straightforward to calculate values of p(n,l) for small values of n; I have found that it is useful to have precalculated tables of this parameter when working certain kinds of problems.
The binary form of integers is an obvious opportunity to investigate partitions in open linear strings. I have just started to consider this, but here are some preliminary examples and observations.
The decimal integer 137 may be written in binary notation as 10001001. Now notice that 10001001 is a string of 8 digits: 3 ones and 5 zeros. The ones are partitioned as 1-1-1 and the 5 zeros are partitioned as 3-2.
The partitions 1-1-1|3-2 do not uniquely connote 197, there are 2 binary numbers with those partitions. We know it is 2 because 1-1-1 has 1 permutation and 3-2 has 2 permutations and 1x2=2.
The set of binary integers with partitions 1-1-1|3-1 is (145, 197).
As another example, the set of binary integers with partitions 2-1-1|2-1 is (75, 77, 83, 89, 101, 105). Here are some other sets, as denoted by combinations of simple partitions.
2-1|1 = (11, 13)
3-1|1 = (23, 29)
4-1|1 = (47, 61)
5-1|1 = (95, 125)
6-1|1 = (191, 253)
2-1|2 = (19, 25)
3-1|3 = (71, 113)
4-1|3 = (143, 241)
2-1-1|1-1 = (43, 45, 53)
Here are some rules for interpreting the partition nomenclature:
1. The first partition is the partition of the 1’s, the second partition refers to the partition of the 0’s.
2. The number of binary integers that have that specific set of partitions for the 1s and 0s will be equal to the product of the permutations of the two partitions.
3. In order to be a valid binary integer, the length of the zeros partition must be equal to or one less than the length of the ones partition.
4. If the length of the partition of zeros is one less than the length of the partition of the 1s, than all the integers in the set will be ODD. If the length of the two partitions are equal, then all the integers in the set will be EVEN.
So given this symbol: 4-3-1-1|2-2-1 it can be immediately deduced that 36 integers will have that configuration of partitions, and they will all be odd numbers in the range 214 to 215-1.
Now let’s look at partitions when writing binary numbers with some of the leading zeroes. To do this it is necessary to define a number “space” or region. Let’s consider all the integers from 0 to (n13-1) and write them all as having 13 digits.
8,191 = 11111111111111 which is 13|0
7,621 = 1110111000101 which is 3-3-1-1|3-1-1
Notice that for 7,621 the ones partition has a length l=4, while the zeroes partition has a length that is 3, or l-1. Here again, we see that if the ones partition has a length n then the length of the ones partition is constrained to be n-1, n, or n+1.
Let’s make a definition that in the space 0 to (213-1) that a number is:
SMALL if it is 0 to (212-1)
LARGE if it is 212 to (212-1)
Now if the ones partition of an integer in the space 0 to (213-1) is of length l, then it is easily proven that:
- The integer will be SMALL and ODD if the zeros partition is of length ( l - 1 )
- The integer will be LARGE and EVEN if the zeros partition is of length ( l + 1 )
- The integer will be either SMALL and EVEN or LARGE and ODD if the zeros partition is of length l
Combinations and Factor of Two
Let me write down one particular mathematical identity that came to me as I was working with binary numbers.
where, again, c(n,m) is the classic formula for combinations when selecting m from n.
Example: Take n=13
c(13,13) =1
c(13,1) = c(13,12) = 13
c(13,2) = c(13,11) =78
c(13,3) = c(13,10) =286
c(13,4) = c(13,9) =715
c(13,5) = c(13,8) =1287
c(13,6) = c(13,7) =1716
and:
1+ 2 x (13 + 78 + 286 + 715 + 1287 + 1716) = 8,191 = 213 - 1
This simple formula potentially links combination math to other areas of number theory such as Mersenne Primes.
The identity may also be written as:
Where now the summation starts at m=0.
Interesting, huh?
Quote: WizardDoes this table not answer your question?
No, I'm looking for an actual listing of the partitions, not the number of them.
ie: here's the listing for 7....
1,1,1,1,1,1,1
2,1,1,1,1,1
2,2,1,1,1
3,1,1,1
2,2,2,1
3,2,1,1
4,1,1,1
3,2,2
3,3,1
4,2,1
5,1,1,
4,3
5,2
6,1
7
I'm looking for this list for 10, 11, 12, 13, 14 and 15.
I could manually do it myself, but worried about missing something. I thought that's what your program did, but maybe not?
Quote: rsactuaryNo, I'm looking for an actual listing of the partitions, not the number of them.
"I see," said the flea (referring to myself). Yes, I think I can get my program to do that. I've got a lot on my plate today, but hopefully I can provide it for any reasonable number soon.
Quote: rsactuaryNo, I'm looking for an actual listing of the partitions, not the number of them.
Partitions for 4
4
3,1
2,2
2,1,1
1,1,1,1
Partitions for 5
5
4,1
3,2
3,1,1
2,2,1
2,1,1,1
1,1,1,1,1
Partitions for 6
6
5,1
4,2
4,1,1
3,3
3,2,1
3,1,1,1
2,2,2
2,2,1,1
2,1,1,1,1
1,1,1,1,1,1
Partitions for 7
7
6,1
5,2
5,1,1
4,3
4,2,1
4,1,1,1
3,3,1
3,2,2
3,2,1,1
3,1,1,1,1
2,2,2,1
2,2,1,1,1
2,1,1,1,1,1
1,1,1,1,1,1,1
Partitions for 8
8
7,1
6,2
6,1,1
5,3
5,2,1
5,1,1,1
4,4
4,3,1
4,2,2
4,2,1,1
4,1,1,1,1
3,3,2
3,3,1,1
3,2,2,1
3,2,1,1,1
3,1,1,1,1,1
2,2,2,2
2,2,2,1,1
2,2,1,1,1,1
2,1,1,1,1,1,1
1,1,1,1,1,1,1,1
Partitions for 9
9
8,1
7,2
7,1,1
6,3
6,2,1
6,1,1,1
5,4
5,3,1
5,2,2
5,2,1,1
5,1,1,1,1
4,4,1
4,3,2
4,3,1,1
4,2,2,1
4,2,1,1,1
4,1,1,1,1,1
3,3,3
3,3,2,1
3,3,1,1,1
3,2,2,2
3,2,2,1,1
3,2,1,1,1,1
3,1,1,1,1,1,1
2,2,2,2,1
2,2,2,1,1,1
2,2,1,1,1,1,1
2,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1
Partitions for 10
10
9,1
8,2
8,1,1
7,3
7,2,1
7,1,1,1
6,4
6,3,1
6,2,2
6,2,1,1
6,1,1,1,1
5,5
5,4,1
5,3,2
5,3,1,1
5,2,2,1
5,2,1,1,1
5,1,1,1,1,1
4,4,2
4,4,1,1
4,3,3
4,3,2,1
4,3,1,1,1
4,2,2,2
4,2,2,1,1
4,2,1,1,1,1
4,1,1,1,1,1,1
3,3,3,1
3,3,2,2
3,3,2,1,1
3,3,1,1,1,1
3,2,2,2,1
3,2,2,1,1,1
3,2,1,1,1,1,1
3,1,1,1,1,1,1,1
2,2,2,2,2
2,2,2,2,1,1
2,2,2,1,1,1,1
2,2,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1
Partitions for 11
11
10,1
9,2
9,1,1
8,3
8,2,1
8,1,1,1
7,4
7,3,1
7,2,2
7,2,1,1
7,1,1,1,1
6,5
6,4,1
6,3,2
6,3,1,1
6,2,2,1
6,2,1,1,1
6,1,1,1,1,1
5,5,1
5,4,2
5,4,1,1
5,3,3
5,3,2,1
5,3,1,1,1
5,2,2,2
5,2,2,1,1
5,2,1,1,1,1
5,1,1,1,1,1,1
4,4,3
4,4,2,1
4,4,1,1,1
4,3,3,1
4,3,2,2
4,3,2,1,1
4,3,1,1,1,1
4,2,2,2,1
4,2,2,1,1,1
4,2,1,1,1,1,1
4,1,1,1,1,1,1,1
3,3,3,2
3,3,3,1,1
3,3,2,2,1
3,3,2,1,1,1
3,3,1,1,1,1,1
3,2,2,2,2
3,2,2,2,1,1
3,2,2,1,1,1,1
3,2,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1
2,2,2,2,2,1
2,2,2,2,1,1,1
2,2,2,1,1,1,1,1
2,2,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1
Partitions for 12
12
11,1
10,2
10,1,1
9,3
9,2,1
9,1,1,1
8,4
8,3,1
8,2,2
8,2,1,1
8,1,1,1,1
7,5
7,4,1
7,3,2
7,3,1,1
7,2,2,1
7,2,1,1,1
7,1,1,1,1,1
6,6
6,5,1
6,4,2
6,4,1,1
6,3,3
6,3,2,1
6,3,1,1,1
6,2,2,2
6,2,2,1,1
6,2,1,1,1,1
6,1,1,1,1,1,1
5,5,2
5,5,1,1
5,4,3
5,4,2,1
5,4,1,1,1
5,3,3,1
5,3,2,2
5,3,2,1,1
5,3,1,1,1,1
5,2,2,2,1
5,2,2,1,1,1
5,2,1,1,1,1,1
5,1,1,1,1,1,1,1
4,4,4
4,4,3,1
4,4,2,2
4,4,2,1,1
4,4,1,1,1,1
4,3,3,2
4,3,3,1,1
4,3,2,2,1
4,3,2,1,1,1
4,3,1,1,1,1,1
4,2,2,2,2
4,2,2,2,1,1
4,2,2,1,1,1,1
4,2,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1
3,3,3,3
3,3,3,2,1
3,3,3,1,1,1
3,3,2,2,2
3,3,2,2,1,1
3,3,2,1,1,1,1
3,3,1,1,1,1,1,1
3,2,2,2,2,1
3,2,2,2,1,1,1
3,2,2,1,1,1,1,1
3,2,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2
2,2,2,2,2,1,1
2,2,2,2,1,1,1,1
2,2,2,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1
Partitions for 13
13
12,1
11,2
11,1,1
10,3
10,2,1
10,1,1,1
9,4
9,3,1
9,2,2
9,2,1,1
9,1,1,1,1
8,5
8,4,1
8,3,2
8,3,1,1
8,2,2,1
8,2,1,1,1
8,1,1,1,1,1
7,6
7,5,1
7,4,2
7,4,1,1
7,3,3
7,3,2,1
7,3,1,1,1
7,2,2,2
7,2,2,1,1
7,2,1,1,1,1
7,1,1,1,1,1,1
6,6,1
6,5,2
6,5,1,1
6,4,3
6,4,2,1
6,4,1,1,1
6,3,3,1
6,3,2,2
6,3,2,1,1
6,3,1,1,1,1
6,2,2,2,1
6,2,2,1,1,1
6,2,1,1,1,1,1
6,1,1,1,1,1,1,1
5,5,3
5,5,2,1
5,5,1,1,1
5,4,4
5,4,3,1
5,4,2,2
5,4,2,1,1
5,4,1,1,1,1
5,3,3,2
5,3,3,1,1
5,3,2,2,1
5,3,2,1,1,1
5,3,1,1,1,1,1
5,2,2,2,2
5,2,2,2,1,1
5,2,2,1,1,1,1
5,2,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1
4,4,4,1
4,4,3,2
4,4,3,1,1
4,4,2,2,1
4,4,2,1,1,1
4,4,1,1,1,1,1
4,3,3,3
4,3,3,2,1
4,3,3,1,1,1
4,3,2,2,2
4,3,2,2,1,1
4,3,2,1,1,1,1
4,3,1,1,1,1,1,1
4,2,2,2,2,1
4,2,2,2,1,1,1
4,2,2,1,1,1,1,1
4,2,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1
3,3,3,3,1
3,3,3,2,2
3,3,3,2,1,1
3,3,3,1,1,1,1
3,3,2,2,2,1
3,3,2,2,1,1,1
3,3,2,1,1,1,1,1
3,3,1,1,1,1,1,1,1
3,2,2,2,2,2
3,2,2,2,2,1,1
3,2,2,2,1,1,1,1
3,2,2,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,1
2,2,2,2,2,1,1,1
2,2,2,2,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1
Partitions for 14
14
13,1
12,2
12,1,1
11,3
11,2,1
11,1,1,1
10,4
10,3,1
10,2,2
10,2,1,1
10,1,1,1,1
9,5
9,4,1
9,3,2
9,3,1,1
9,2,2,1
9,2,1,1,1
9,1,1,1,1,1
8,6
8,5,1
8,4,2
8,4,1,1
8,3,3
8,3,2,1
8,3,1,1,1
8,2,2,2
8,2,2,1,1
8,2,1,1,1,1
8,1,1,1,1,1,1
7,7
7,6,1
7,5,2
7,5,1,1
7,4,3
7,4,2,1
7,4,1,1,1
7,3,3,1
7,3,2,2
7,3,2,1,1
7,3,1,1,1,1
7,2,2,2,1
7,2,2,1,1,1
7,2,1,1,1,1,1
7,1,1,1,1,1,1,1
6,6,2
6,6,1,1
6,5,3
6,5,2,1
6,5,1,1,1
6,4,4
6,4,3,1
6,4,2,2
6,4,2,1,1
6,4,1,1,1,1
6,3,3,2
6,3,3,1,1
6,3,2,2,1
6,3,2,1,1,1
6,3,1,1,1,1,1
6,2,2,2,2
6,2,2,2,1,1
6,2,2,1,1,1,1
6,2,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1
5,5,4
5,5,3,1
5,5,2,2
5,5,2,1,1
5,5,1,1,1,1
5,4,4,1
5,4,3,2
5,4,3,1,1
5,4,2,2,1
5,4,2,1,1,1
5,4,1,1,1,1,1
5,3,3,3
5,3,3,2,1
5,3,3,1,1,1
5,3,2,2,2
5,3,2,2,1,1
5,3,2,1,1,1,1
5,3,1,1,1,1,1,1
5,2,2,2,2,1
5,2,2,2,1,1,1
5,2,2,1,1,1,1,1
5,2,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1
4,4,4,2
4,4,4,1,1
4,4,3,3
4,4,3,2,1
4,4,3,1,1,1
4,4,2,2,2
4,4,2,2,1,1
4,4,2,1,1,1,1
4,4,1,1,1,1,1,1
4,3,3,3,1
4,3,3,2,2
4,3,3,2,1,1
4,3,3,1,1,1,1
4,3,2,2,2,1
4,3,2,2,1,1,1
4,3,2,1,1,1,1,1
4,3,1,1,1,1,1,1,1
4,2,2,2,2,2
4,2,2,2,2,1,1
4,2,2,2,1,1,1,1
4,2,2,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1
3,3,3,3,2
3,3,3,3,1,1
3,3,3,2,2,1
3,3,3,2,1,1,1
3,3,3,1,1,1,1,1
3,3,2,2,2,2
3,3,2,2,2,1,1
3,3,2,2,1,1,1,1
3,3,2,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1
3,2,2,2,2,2,1
3,2,2,2,2,1,1,1
3,2,2,2,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2
2,2,2,2,2,2,1,1
2,2,2,2,2,1,1,1,1
2,2,2,2,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1
Partitions for 15
15
14,1
13,2
13,1,1
12,3
12,2,1
12,1,1,1
11,4
11,3,1
11,2,2
11,2,1,1
11,1,1,1,1
10,5
10,4,1
10,3,2
10,3,1,1
10,2,2,1
10,2,1,1,1
10,1,1,1,1,1
9,6
9,5,1
9,4,2
9,4,1,1
9,3,3
9,3,2,1
9,3,1,1,1
9,2,2,2
9,2,2,1,1
9,2,1,1,1,1
9,1,1,1,1,1,1
8,7
8,6,1
8,5,2
8,5,1,1
8,4,3
8,4,2,1
8,4,1,1,1
8,3,3,1
8,3,2,2
8,3,2,1,1
8,3,1,1,1,1
8,2,2,2,1
8,2,2,1,1,1
8,2,1,1,1,1,1
8,1,1,1,1,1,1,1
7,7,1
7,6,2
7,6,1,1
7,5,3
7,5,2,1
7,5,1,1,1
7,4,4
7,4,3,1
7,4,2,2
7,4,2,1,1
7,4,1,1,1,1
7,3,3,2
7,3,3,1,1
7,3,2,2,1
7,3,2,1,1,1
7,3,1,1,1,1,1
7,2,2,2,2
7,2,2,2,1,1
7,2,2,1,1,1,1
7,2,1,1,1,1,1,1
7,1,1,1,1,1,1,1,1
6,6,3
6,6,2,1
6,6,1,1,1
6,5,4
6,5,3,1
6,5,2,2
6,5,2,1,1
6,5,1,1,1,1
6,4,4,1
6,4,3,2
6,4,3,1,1
6,4,2,2,1
6,4,2,1,1,1
6,4,1,1,1,1,1
6,3,3,3
6,3,3,2,1
6,3,3,1,1,1
6,3,2,2,2
6,3,2,2,1,1
6,3,2,1,1,1,1
6,3,1,1,1,1,1,1
6,2,2,2,2,1
6,2,2,2,1,1,1
6,2,2,1,1,1,1,1
6,2,1,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1,1
5,5,5
5,5,4,1
5,5,3,2
5,5,3,1,1
5,5,2,2,1
5,5,2,1,1,1
5,5,1,1,1,1,1
5,4,4,2
5,4,4,1,1
5,4,3,3
5,4,3,2,1
5,4,3,1,1,1
5,4,2,2,2
5,4,2,2,1,1
5,4,2,1,1,1,1
5,4,1,1,1,1,1,1
5,3,3,3,1
5,3,3,2,2
5,3,3,2,1,1
5,3,3,1,1,1,1
5,3,2,2,2,1
5,3,2,2,1,1,1
5,3,2,1,1,1,1,1
5,3,1,1,1,1,1,1,1
5,2,2,2,2,2
5,2,2,2,2,1,1
5,2,2,2,1,1,1,1
5,2,2,1,1,1,1,1,1
5,2,1,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1,1
4,4,4,3
4,4,4,2,1
4,4,4,1,1,1
4,4,3,3,1
4,4,3,2,2
4,4,3,2,1,1
4,4,3,1,1,1,1
4,4,2,2,2,1
4,4,2,2,1,1,1
4,4,2,1,1,1,1,1
4,4,1,1,1,1,1,1,1
4,3,3,3,2
4,3,3,3,1,1
4,3,3,2,2,1
4,3,3,2,1,1,1
4,3,3,1,1,1,1,1
4,3,2,2,2,2
4,3,2,2,2,1,1
4,3,2,2,1,1,1,1
4,3,2,1,1,1,1,1,1
4,3,1,1,1,1,1,1,1,1
4,2,2,2,2,2,1
4,2,2,2,2,1,1,1
4,2,2,2,1,1,1,1,1
4,2,2,1,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1,1
3,3,3,3,3
3,3,3,3,2,1
3,3,3,3,1,1,1
3,3,3,2,2,2
3,3,3,2,2,1,1
3,3,3,2,1,1,1,1
3,3,3,1,1,1,1,1,1
3,3,2,2,2,2,1
3,3,2,2,2,1,1,1
3,3,2,2,1,1,1,1,1
3,3,2,1,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1,1
3,2,2,2,2,2,2
3,2,2,2,2,2,1,1
3,2,2,2,2,1,1,1,1
3,2,2,2,1,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2,1
2,2,2,2,2,2,1,1,1
2,2,2,2,2,1,1,1,1,1
2,2,2,2,1,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
Quote: Wizard
Partitions for 4
4
3,1
2,2
2,1,1
1,1,1,1
Partitions for 5
5
4,1
3,2
3,1,1
2,2,1
2,1,1,1
1,1,1,1,1
Partitions for 6
6
5,1
4,2
4,1,1
3,3
3,2,1
3,1,1,1
2,2,2
2,2,1,1
2,1,1,1,1
1,1,1,1,1,1
Partitions for 7
7
6,1
5,2
5,1,1
4,3
4,2,1
4,1,1,1
3,3,1
3,2,2
3,2,1,1
3,1,1,1,1
2,2,2,1
2,2,1,1,1
2,1,1,1,1,1
1,1,1,1,1,1,1
Partitions for 8
8
7,1
6,2
6,1,1
5,3
5,2,1
5,1,1,1
4,4
4,3,1
4,2,2
4,2,1,1
4,1,1,1,1
3,3,2
3,3,1,1
3,2,2,1
3,2,1,1,1
3,1,1,1,1,1
2,2,2,2
2,2,2,1,1
2,2,1,1,1,1
2,1,1,1,1,1,1
1,1,1,1,1,1,1,1
Partitions for 9
9
8,1
7,2
7,1,1
6,3
6,2,1
6,1,1,1
5,4
5,3,1
5,2,2
5,2,1,1
5,1,1,1,1
4,4,1
4,3,2
4,3,1,1
4,2,2,1
4,2,1,1,1
4,1,1,1,1,1
3,3,3
3,3,2,1
3,3,1,1,1
3,2,2,2
3,2,2,1,1
3,2,1,1,1,1
3,1,1,1,1,1,1
2,2,2,2,1
2,2,2,1,1,1
2,2,1,1,1,1,1
2,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1
Partitions for 10
10
9,1
8,2
8,1,1
7,3
7,2,1
7,1,1,1
6,4
6,3,1
6,2,2
6,2,1,1
6,1,1,1,1
5,5
5,4,1
5,3,2
5,3,1,1
5,2,2,1
5,2,1,1,1
5,1,1,1,1,1
4,4,2
4,4,1,1
4,3,3
4,3,2,1
4,3,1,1,1
4,2,2,2
4,2,2,1,1
4,2,1,1,1,1
4,1,1,1,1,1,1
3,3,3,1
3,3,2,2
3,3,2,1,1
3,3,1,1,1,1
3,2,2,2,1
3,2,2,1,1,1
3,2,1,1,1,1,1
3,1,1,1,1,1,1,1
2,2,2,2,2
2,2,2,2,1,1
2,2,2,1,1,1,1
2,2,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1
Partitions for 11
11
10,1
9,2
9,1,1
8,3
8,2,1
8,1,1,1
7,4
7,3,1
7,2,2
7,2,1,1
7,1,1,1,1
6,5
6,4,1
6,3,2
6,3,1,1
6,2,2,1
6,2,1,1,1
6,1,1,1,1,1
5,5,1
5,4,2
5,4,1,1
5,3,3
5,3,2,1
5,3,1,1,1
5,2,2,2
5,2,2,1,1
5,2,1,1,1,1
5,1,1,1,1,1,1
4,4,3
4,4,2,1
4,4,1,1,1
4,3,3,1
4,3,2,2
4,3,2,1,1
4,3,1,1,1,1
4,2,2,2,1
4,2,2,1,1,1
4,2,1,1,1,1,1
4,1,1,1,1,1,1,1
3,3,3,2
3,3,3,1,1
3,3,2,2,1
3,3,2,1,1,1
3,3,1,1,1,1,1
3,2,2,2,2
3,2,2,2,1,1
3,2,2,1,1,1,1
3,2,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1
2,2,2,2,2,1
2,2,2,2,1,1,1
2,2,2,1,1,1,1,1
2,2,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1
Partitions for 12
12
11,1
10,2
10,1,1
9,3
9,2,1
9,1,1,1
8,4
8,3,1
8,2,2
8,2,1,1
8,1,1,1,1
7,5
7,4,1
7,3,2
7,3,1,1
7,2,2,1
7,2,1,1,1
7,1,1,1,1,1
6,6
6,5,1
6,4,2
6,4,1,1
6,3,3
6,3,2,1
6,3,1,1,1
6,2,2,2
6,2,2,1,1
6,2,1,1,1,1
6,1,1,1,1,1,1
5,5,2
5,5,1,1
5,4,3
5,4,2,1
5,4,1,1,1
5,3,3,1
5,3,2,2
5,3,2,1,1
5,3,1,1,1,1
5,2,2,2,1
5,2,2,1,1,1
5,2,1,1,1,1,1
5,1,1,1,1,1,1,1
4,4,4
4,4,3,1
4,4,2,2
4,4,2,1,1
4,4,1,1,1,1
4,3,3,2
4,3,3,1,1
4,3,2,2,1
4,3,2,1,1,1
4,3,1,1,1,1,1
4,2,2,2,2
4,2,2,2,1,1
4,2,2,1,1,1,1
4,2,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1
3,3,3,3
3,3,3,2,1
3,3,3,1,1,1
3,3,2,2,2
3,3,2,2,1,1
3,3,2,1,1,1,1
3,3,1,1,1,1,1,1
3,2,2,2,2,1
3,2,2,2,1,1,1
3,2,2,1,1,1,1,1
3,2,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2
2,2,2,2,2,1,1
2,2,2,2,1,1,1,1
2,2,2,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1
Partitions for 13
13
12,1
11,2
11,1,1
10,3
10,2,1
10,1,1,1
9,4
9,3,1
9,2,2
9,2,1,1
9,1,1,1,1
8,5
8,4,1
8,3,2
8,3,1,1
8,2,2,1
8,2,1,1,1
8,1,1,1,1,1
7,6
7,5,1
7,4,2
7,4,1,1
7,3,3
7,3,2,1
7,3,1,1,1
7,2,2,2
7,2,2,1,1
7,2,1,1,1,1
7,1,1,1,1,1,1
6,6,1
6,5,2
6,5,1,1
6,4,3
6,4,2,1
6,4,1,1,1
6,3,3,1
6,3,2,2
6,3,2,1,1
6,3,1,1,1,1
6,2,2,2,1
6,2,2,1,1,1
6,2,1,1,1,1,1
6,1,1,1,1,1,1,1
5,5,3
5,5,2,1
5,5,1,1,1
5,4,4
5,4,3,1
5,4,2,2
5,4,2,1,1
5,4,1,1,1,1
5,3,3,2
5,3,3,1,1
5,3,2,2,1
5,3,2,1,1,1
5,3,1,1,1,1,1
5,2,2,2,2
5,2,2,2,1,1
5,2,2,1,1,1,1
5,2,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1
4,4,4,1
4,4,3,2
4,4,3,1,1
4,4,2,2,1
4,4,2,1,1,1
4,4,1,1,1,1,1
4,3,3,3
4,3,3,2,1
4,3,3,1,1,1
4,3,2,2,2
4,3,2,2,1,1
4,3,2,1,1,1,1
4,3,1,1,1,1,1,1
4,2,2,2,2,1
4,2,2,2,1,1,1
4,2,2,1,1,1,1,1
4,2,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1
3,3,3,3,1
3,3,3,2,2
3,3,3,2,1,1
3,3,3,1,1,1,1
3,3,2,2,2,1
3,3,2,2,1,1,1
3,3,2,1,1,1,1,1
3,3,1,1,1,1,1,1,1
3,2,2,2,2,2
3,2,2,2,2,1,1
3,2,2,2,1,1,1,1
3,2,2,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,1
2,2,2,2,2,1,1,1
2,2,2,2,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1
Partitions for 14
14
13,1
12,2
12,1,1
11,3
11,2,1
11,1,1,1
10,4
10,3,1
10,2,2
10,2,1,1
10,1,1,1,1
9,5
9,4,1
9,3,2
9,3,1,1
9,2,2,1
9,2,1,1,1
9,1,1,1,1,1
8,6
8,5,1
8,4,2
8,4,1,1
8,3,3
8,3,2,1
8,3,1,1,1
8,2,2,2
8,2,2,1,1
8,2,1,1,1,1
8,1,1,1,1,1,1
7,7
7,6,1
7,5,2
7,5,1,1
7,4,3
7,4,2,1
7,4,1,1,1
7,3,3,1
7,3,2,2
7,3,2,1,1
7,3,1,1,1,1
7,2,2,2,1
7,2,2,1,1,1
7,2,1,1,1,1,1
7,1,1,1,1,1,1,1
6,6,2
6,6,1,1
6,5,3
6,5,2,1
6,5,1,1,1
6,4,4
6,4,3,1
6,4,2,2
6,4,2,1,1
6,4,1,1,1,1
6,3,3,2
6,3,3,1,1
6,3,2,2,1
6,3,2,1,1,1
6,3,1,1,1,1,1
6,2,2,2,2
6,2,2,2,1,1
6,2,2,1,1,1,1
6,2,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1
5,5,4
5,5,3,1
5,5,2,2
5,5,2,1,1
5,5,1,1,1,1
5,4,4,1
5,4,3,2
5,4,3,1,1
5,4,2,2,1
5,4,2,1,1,1
5,4,1,1,1,1,1
5,3,3,3
5,3,3,2,1
5,3,3,1,1,1
5,3,2,2,2
5,3,2,2,1,1
5,3,2,1,1,1,1
5,3,1,1,1,1,1,1
5,2,2,2,2,1
5,2,2,2,1,1,1
5,2,2,1,1,1,1,1
5,2,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1
4,4,4,2
4,4,4,1,1
4,4,3,3
4,4,3,2,1
4,4,3,1,1,1
4,4,2,2,2
4,4,2,2,1,1
4,4,2,1,1,1,1
4,4,1,1,1,1,1,1
4,3,3,3,1
4,3,3,2,2
4,3,3,2,1,1
4,3,3,1,1,1,1
4,3,2,2,2,1
4,3,2,2,1,1,1
4,3,2,1,1,1,1,1
4,3,1,1,1,1,1,1,1
4,2,2,2,2,2
4,2,2,2,2,1,1
4,2,2,2,1,1,1,1
4,2,2,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1
3,3,3,3,2
3,3,3,3,1,1
3,3,3,2,2,1
3,3,3,2,1,1,1
3,3,3,1,1,1,1,1
3,3,2,2,2,2
3,3,2,2,2,1,1
3,3,2,2,1,1,1,1
3,3,2,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1
3,2,2,2,2,2,1
3,2,2,2,2,1,1,1
3,2,2,2,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2
2,2,2,2,2,2,1,1
2,2,2,2,2,1,1,1,1
2,2,2,2,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1
Partitions for 15
15
14,1
13,2
13,1,1
12,3
12,2,1
12,1,1,1
11,4
11,3,1
11,2,2
11,2,1,1
11,1,1,1,1
10,5
10,4,1
10,3,2
10,3,1,1
10,2,2,1
10,2,1,1,1
10,1,1,1,1,1
9,6
9,5,1
9,4,2
9,4,1,1
9,3,3
9,3,2,1
9,3,1,1,1
9,2,2,2
9,2,2,1,1
9,2,1,1,1,1
9,1,1,1,1,1,1
8,7
8,6,1
8,5,2
8,5,1,1
8,4,3
8,4,2,1
8,4,1,1,1
8,3,3,1
8,3,2,2
8,3,2,1,1
8,3,1,1,1,1
8,2,2,2,1
8,2,2,1,1,1
8,2,1,1,1,1,1
8,1,1,1,1,1,1,1
7,7,1
7,6,2
7,6,1,1
7,5,3
7,5,2,1
7,5,1,1,1
7,4,4
7,4,3,1
7,4,2,2
7,4,2,1,1
7,4,1,1,1,1
7,3,3,2
7,3,3,1,1
7,3,2,2,1
7,3,2,1,1,1
7,3,1,1,1,1,1
7,2,2,2,2
7,2,2,2,1,1
7,2,2,1,1,1,1
7,2,1,1,1,1,1,1
7,1,1,1,1,1,1,1,1
6,6,3
6,6,2,1
6,6,1,1,1
6,5,4
6,5,3,1
6,5,2,2
6,5,2,1,1
6,5,1,1,1,1
6,4,4,1
6,4,3,2
6,4,3,1,1
6,4,2,2,1
6,4,2,1,1,1
6,4,1,1,1,1,1
6,3,3,3
6,3,3,2,1
6,3,3,1,1,1
6,3,2,2,2
6,3,2,2,1,1
6,3,2,1,1,1,1
6,3,1,1,1,1,1,1
6,2,2,2,2,1
6,2,2,2,1,1,1
6,2,2,1,1,1,1,1
6,2,1,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1,1
5,5,5
5,5,4,1
5,5,3,2
5,5,3,1,1
5,5,2,2,1
5,5,2,1,1,1
5,5,1,1,1,1,1
5,4,4,2
5,4,4,1,1
5,4,3,3
5,4,3,2,1
5,4,3,1,1,1
5,4,2,2,2
5,4,2,2,1,1
5,4,2,1,1,1,1
5,4,1,1,1,1,1,1
5,3,3,3,1
5,3,3,2,2
5,3,3,2,1,1
5,3,3,1,1,1,1
5,3,2,2,2,1
5,3,2,2,1,1,1
5,3,2,1,1,1,1,1
5,3,1,1,1,1,1,1,1
5,2,2,2,2,2
5,2,2,2,2,1,1
5,2,2,2,1,1,1,1
5,2,2,1,1,1,1,1,1
5,2,1,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1,1
4,4,4,3
4,4,4,2,1
4,4,4,1,1,1
4,4,3,3,1
4,4,3,2,2
4,4,3,2,1,1
4,4,3,1,1,1,1
4,4,2,2,2,1
4,4,2,2,1,1,1
4,4,2,1,1,1,1,1
4,4,1,1,1,1,1,1,1
4,3,3,3,2
4,3,3,3,1,1
4,3,3,2,2,1
4,3,3,2,1,1,1
4,3,3,1,1,1,1,1
4,3,2,2,2,2
4,3,2,2,2,1,1
4,3,2,2,1,1,1,1
4,3,2,1,1,1,1,1,1
4,3,1,1,1,1,1,1,1,1
4,2,2,2,2,2,1
4,2,2,2,2,1,1,1
4,2,2,2,1,1,1,1,1
4,2,2,1,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1,1
3,3,3,3,3
3,3,3,3,2,1
3,3,3,3,1,1,1
3,3,3,2,2,2
3,3,3,2,2,1,1
3,3,3,2,1,1,1,1
3,3,3,1,1,1,1,1,1
3,3,2,2,2,2,1
3,3,2,2,2,1,1,1
3,3,2,2,1,1,1,1,1
3,3,2,1,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1,1
3,2,2,2,2,2,2
3,2,2,2,2,2,1,1
3,2,2,2,2,1,1,1,1
3,2,2,2,1,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2,1
2,2,2,2,2,2,1,1,1
2,2,2,2,2,1,1,1,1,1
2,2,2,2,1,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
Seems like there’s should be an elegant recursive formula out there to delineate partitions.
Quote: unJonSeems like there’s should be an elegant recursive formula out there to delineate partitions.
That hits the nail on the head. This is the kind of thing that is probably best discussed over a few beers than a calculator, but, briefly, I feel nothing in math is a coincidence or random. There are patterns in everything, but sometimes we can't find an exact expression for them...yet. Everything seems to boil down to some function of pi, e, or prime numbers. Some, maybe me, would go so far as to claim it is evidence of a higher power.
Quote: WizardThat hits the nail on the head. This is the kind of thing that is probably best discussed over a few beers than a calculator, but, briefly, I feel nothing in math is a coincidence or random. There are patterns in everything, but sometimes we can't find an exact expression for them...yet. Everything seems to boil down to some function of pi, e, or prime numbers. Some, maybe me, would go so far as to claim it is evidence of a higher power.
"God dont play dice with the universe. God dont care about our math." - Einstein, Wizard of Universe
Evidence? Just a hint, maybe.Quote: Wizard. Some, maybe me, would go so far as to claim it is evidence of a higher power.
Anyway, hint or evidence, it would first require to define ‘higher’ and ‘power’. Otherwise, every conjecture would be a hint of a higher power, Too. Or Ramanujan’s 163.
Just saying ‘something inexplicable’ would be tautological... Ginving a specific form to that inexplicable would be a rash move.
Quote: kubikulannEvidence? Just a hint, maybe.
One could write a book in answer to the question and barely scratch the surface.
Partitions for 15
15
14,1
13,2
13,1,1
12,3
12,2,1
12,1,1,1
11,4
11,3,1
11,2,2
11,2,1,1
11,1,1,1,1
10,5
10,4,1
10,3,2
10,3,1,1
10,2,2,1
10,2,1,1,1
10,1,1,1,1,1
9,6
9,5,1
9,4,2
9,4,1,1
9,3,3
9,3,2,1
9,3,1,1,1
9,2,2,2
9,2,2,1,1
9,2,1,1,1,1
9,1,1,1,1,1,1
8,7
8,6,1
8,5,2
8,5,1,1
8,4,3
8,4,2,1
8,4,1,1,1
8,3,3,1
8,3,2,2
8,3,2,1,1
8,3,1,1,1,1
8,2,2,2,1
8,2,2,1,1,1
8,2,1,1,1,1,1
8,1,1,1,1,1,1,1
7,7,1
7,6,2
7,6,1,1
7,5,3
7,5,2,1
7,5,1,1,1
7,4,4
7,4,3,1
7,4,2,2
7,4,2,1,1
7,4,1,1,1,1
7,3,3,2
7,3,3,1,1
7,3,2,2,1
7,3,2,1,1,1
7,3,1,1,1,1,1
7,2,2,2,2
7,2,2,2,1,1
7,2,2,1,1,1,1
7,2,1,1,1,1,1,1
7,1,1,1,1,1,1,1,1
6,6,3
6,6,2,1
6,6,1,1,1
6,5,4
6,5,3,1
6,5,2,2
6,5,2,1,1
6,5,1,1,1,1
6,4,4,1
6,4,3,2
6,4,3,1,1
6,4,2,2,1
6,4,2,1,1,1
6,4,1,1,1,1,1
6,3,3,3
6,3,3,2,1
6,3,3,1,1,1
6,3,2,2,2
6,3,2,2,1,1
6,3,2,1,1,1,1
6,3,1,1,1,1,1,1
6,2,2,2,2,1
6,2,2,2,1,1,1
6,2,2,1,1,1,1,1
6,2,1,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1,1
5,5,5
5,5,4,1
5,5,3,2
5,5,3,1,1
5,5,2,2,1
5,5,2,1,1,1
5,5,1,1,1,1,1
5,4,4,2
5,4,4,1,1
5,4,3,3
5,4,3,2,1
5,4,3,1,1,1
5,4,2,2,2
5,4,2,2,1,1
5,4,2,1,1,1,1
5,4,1,1,1,1,1,1
5,3,3,3,1
5,3,3,2,2
5,3,3,2,1,1
5,3,3,1,1,1,1
5,3,2,2,2,1
5,3,2,2,1,1,1
5,3,2,1,1,1,1,1
5,3,1,1,1,1,1,1,1
5,2,2,2,2,2
5,2,2,2,2,1,1
5,2,2,2,1,1,1,1
5,2,2,1,1,1,1,1,1
5,2,1,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1,1
4,4,4,3
4,4,4,2,1
4,4,4,1,1,1
4,4,3,3,1
4,4,3,2,2
4,4,3,2,1,1
4,4,3,1,1,1,1
4,4,2,2,2,1
4,4,2,2,1,1,1
4,4,2,1,1,1,1,1
4,4,1,1,1,1,1,1,1
4,3,3,3,2
4,3,3,3,1,1
4,3,3,2,2,1
4,3,3,2,1,1,1
4,3,3,1,1,1,1,1
4,3,2,2,2,2
4,3,2,2,2,1,1
4,3,2,2,1,1,1,1
4,3,2,1,1,1,1,1,1
4,3,1,1,1,1,1,1,1,1
4,2,2,2,2,2,1
4,2,2,2,2,1,1,1
4,2,2,2,1,1,1,1,1
4,2,2,1,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1,1
3,3,3,3,3
3,3,3,3,2,1
3,3,3,3,1,1,1
3,3,3,2,2,2
3,3,3,2,2,1,1
3,3,3,2,1,1,1,1
3,3,3,1,1,1,1,1,1
3,3,2,2,2,2,1
3,3,2,2,2,1,1,1
3,3,2,2,1,1,1,1,1
3,3,2,1,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1,1
3,2,2,2,2,2,2
3,2,2,2,2,2,1,1
3,2,2,2,2,1,1,1,1
3,2,2,2,1,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2,1
2,2,2,2,2,2,1,1,1
2,2,2,2,2,1,1,1,1,1
2,2,2,2,1,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
Don’t forget Pascal’s triangle and sine waves in the list of concepts that pop up in interesting places.Quote: WizardThat hits the nail on the head. This is the kind of thing that is probably best discussed over a few beers than a calculator, but, briefly, I feel nothing in math is a coincidence or random. There are patterns in everything, but sometimes we can't find an exact expression for them...yet. Everything seems to boil down to some function of pi, e, or prime numbers. Some, maybe me, would go so far as to claim it is evidence of a higher power.
Quote: WizardIf there's a term for it, I don't know what it is. The way my math works is I keep track of the maximum height in any given partition. For example, the number of partitions in 100 equals:
P(100) = P(1) + P(2) + ... + P(50) (these are for the cases where the height of the longest stack is 50 to 100) + P(51,49) + P(52,48) + ... P (100,1),
where P(x,y) = Number of partitions where x is the total items and y is the maximum height of a stack.
For example if the height of the largest stack is 30, then there are 70 left, but you can't have a stack higher than 30.
Just one way of getting the answer by brute force.
Yes, I do something very similar, except I use the length of the partition. This is the table I calculate for the the first 10 numbers. In this table the number being partitioned is in the first column, and the row across the top is the length of the partitions. This table gives the number of partitions of a given length for each number - and, in the last column, the total number of partitions. However if you want to create the number of partitions of 10 of various lengths, it is necessary to first calculate values for the first 9 rows. And if you wanted to create a row for the partitions of 200, you would first need to calculate the rows for 1-199.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | | | | | | | | | | 1 |
2 | 1 | 1 | | | | | | | | | 2 |
3 | 1 | 1 | 1 | | | | | | | | 3 |
4 | 1 | 2 | 1 | 1 | | | | | | | 5 |
5 | 1 | 2 | 2 | 1 | 1 | | | | | | 7 |
6 | 1 | 3 | 3 | 2 | 1 | 1 | | | | | 11 |
7 | 1 | 3 | 4 | 3 | 2 | 1 | 1 | | | | 15 |
8 | 1 | 4 | 5 | 5 | 3 | 2 | 1 | 1 | | | 22 |
9 | 1 | 4 | 7 | 6 | 5 | 3 | 2 | 1 | 1 | | 30 |
10 | 1 | 5 | 8 | 9 | 7 | 5 | 3 | 2 | 1 | 1 | 42 |
I think one approach is to seek analytical formulas for all the entries in any given row in this table and then sum to get the total number of partitions.
I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | | | | | | | | | | 1 |
2 | 1 | 1 | | | | | | | | | 2 |
3 | 1 | 2 | 1 | | | | | | | | 4 |
4 | 1 | 3 | 3 | 1 | | | | | | | 8 |
5 | 1 | 4 | 6 | 4 | 1 | | | | | | 16 |
6 | 1 | 5 | 10 | 10 | 5 | 1 | | | | | 32 |
7 | 1 | 6 | 15 | 20 | 15 | 6 | 1 | | | | 64 |
8 | 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 | | | 128 |
9 | 1 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 | | 256 |
10 | 1 | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | 1 | 512 |
Notice that this table appears to have distinct patterns and it may be possible to find analytical formulas to calculate these numbers.. The question in my mind is: if we can find algebraic formulas to calculate this 'permutations' table, might that be an intermediate step to calculate the "number of partitions" table that I showed first? or, more directly, the total number of partitions for any given number?
Quote: gordonm888Yes, I do something very similar, except I use the length of the partition. This is the table I calculate for the the first 10 numbers. In this table the number being partitioned is in the first column, and the row across the top is the length of the partitions. This table gives the number of partitions of a given length for each number - and, in the last column, the total number of partitions. However if you want to create the number of partitions of 10 of various lengths, it is necessary to first calculate values for the first 9 rows. And if you wanted to create a row for the partitions of 200, you would first need to calculate the rows for 1-199.
1 2 3 4 5 6 7 8 9 10 Total 1 1 1 2 1 1 2 3 1 1 1 3 4 1 2 1 1 5 5 1 2 2 1 1 7 6 1 3 3 2 1 1 11 7 1 3 4 3 2 1 1 15 8 1 4 5 5 3 2 1 1 22 9 1 4 7 6 5 3 2 1 1 30 10 1 5 8 9 7 5 3 2 1 1 42
I think one approach is to seek analytical formulas for all the entries in any given row in this table and then sum to get the total number of partitions.
I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:
1 2 3 4 5 6 7 8 9 10 Total 1 1 1 2 1 1 2 3 1 2 1 4 4 1 3 3 1 8 5 1 4 6 4 1 16 6 1 5 10 10 5 1 32 7 1 6 15 20 15 6 1 64 8 1 7 21 35 35 21 7 1 128 9 1 8 28 56 70 56 28 8 1 256 10 1 9 36 84 126 126 84 36 9 1 512
Notice that this table appears to have distinct patterns and it may be possible to find analytical formulas to calculate these numbers.. The question in my mind is: if we can find algebraic formulas to calculate this 'permutations' table, might that be an intermediate step to calculate the "number of partitions" table that I showed first? or, more directly, the total number of partitions for any given number?
It looks to me that every number in the last table can be generated as the sum of the number directly above and the number just above and to the left.
https://brianwhitworth.com/quantum-realism-4-6-3-the-evolution-of-electron-shells/
If you look at these tables, they definitely resemble many of the data relation discussed on this thread.
Marty, 20-Aug-2019
Quote: unJonQuote: gordonm888Yes, I do something very similar, except I use the length of the partition. This is the table I calculate for the the first 10 numbers. In this table the number being partitioned is in the first column, and the row across the top is the length of the partitions. This table gives the number of partitions of a given length for each number - and, in the last column, the total number of partitions. However if you want to create the number of partitions of 10 of various lengths, it is necessary to first calculate values for the first 9 rows. And if you wanted to create a row for the partitions of 200, you would first need to calculate the rows for 1-199.
1 2 3 4 5 6 7 8 9 10 Total 1 1 1 2 1 1 2 3 1 1 1 3 4 1 2 1 1 5 5 1 2 2 1 1 7 6 1 3 3 2 1 1 11 7 1 3 4 3 2 1 1 15 8 1 4 5 5 3 2 1 1 22 9 1 4 7 6 5 3 2 1 1 30 10 1 5 8 9 7 5 3 2 1 1 42
I think one approach is to seek analytical formulas for all the entries in any given row in this table and then sum to get the total number of partitions.
I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:
1 2 3 4 5 6 7 8 9 10 Total 1 1 1 2 1 1 2 3 1 2 1 4 4 1 3 3 1 8 5 1 4 6 4 1 16 6 1 5 10 10 5 1 32 7 1 6 15 20 15 6 1 64 8 1 7 21 35 35 21 7 1 128 9 1 8 28 56 70 56 28 8 1 256 10 1 9 36 84 126 126 84 36 9 1 512
Notice that this table appears to have distinct patterns and it may be possible to find analytical formulas to calculate these numbers.. The question in my mind is: if we can find algebraic formulas to calculate this 'permutations' table, might that be an intermediate step to calculate the "number of partitions" table that I showed first? or, more directly, the total number of partitions for any given number?
It looks to me that every number in the last table can be generated as the sum of the number directly above and the number just above and to the left.
Yes, I agree. But the desire is to generate the numbers on any given row without generating all the previous rows. I think that can be done for the permutation table, and perhaps for the "number of partitions table." But whether it will lend itself to a tractable analytic expression is not clear. But I think its an attractive line of inquiry to pursue.
Quote: gordonm888Yes, I do something very similar, except I use the length of the partition. This is the table I calculate for the the first 10 numbers. In this table the number being partitioned is in the first column, and the row across the top is the length of the partitions. This table gives the number of partitions of a given length for each number - and, in the last column, the total number of partitions. However if you want to create the number of partitions of 10 of various lengths, it is necessary to first calculate values for the first 9 rows. And if you wanted to create a row for the partitions of 200, you would first need to calculate the rows for 1-199.
1 2 3 4 5 6 7 8 9 10 Total 1 1 1 2 1 1 2 3 1 1 1 3 4 1 2 1 1 5 5 1 2 2 1 1 7 6 1 3 3 2 1 1 11 7 1 3 4 3 2 1 1 15 8 1 4 5 5 3 2 1 1 22 9 1 4 7 6 5 3 2 1 1 30 10 1 5 8 9 7 5 3 2 1 1 42
I think one approach is to seek analytical formulas for all the entries in any given row in this table and then sum to get the total number of partitions.
I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:
1 2 3 4 5 6 7 8 9 10 Total 1 1 1 2 1 1 2 3 1 2 1 4 4 1 3 3 1 8 5 1 4 6 4 1 16 6 1 5 10 10 5 1 32 7 1 6 15 20 15 6 1 64 8 1 7 21 35 35 21 7 1 128 9 1 8 28 56 70 56 28 8 1 256 10 1 9 36 84 126 126 84 36 9 1 512
Notice that this table appears to have distinct patterns and it may be possible to find analytical formulas to calculate these numbers.. The question in my mind is: if we can find algebraic formulas to calculate this 'permutations' table, might that be an intermediate step to calculate the "number of partitions" table that I showed first? or, more directly, the total number of partitions for any given number?
D'oh. The values in the 2nd table are combin(N,L) where the first column is N and the first row is L.
Quote: gordonm888
I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:
1 2 3 4 5 6 7 8 9 10 Total 1 1 1 2 1 1 2 3 1 2 1 4 4 1 3 3 1 8 5 1 4 6 4 1 16 6 1 5 10 10 5 1 32 7 1 6 15 20 15 6 1 64 8 1 7 21 35 35 21 7 1 128 9 1 8 28 56 70 56 28 8 1 256 10 1 9 36 84 126 126 84 36 9 1 512
This is Pascal’s table. (aka Binomial coefficients table)
Quote: kubikulannQuote: gordonm888
I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:
1 2 3 4 5 6 7 8 9 10 Total 1 1 1 2 1 1 2 3 1 2 1 4 4 1 3 3 1 8 5 1 4 6 4 1 16 6 1 5 10 10 5 1 32 7 1 6 15 20 15 6 1 64 8 1 7 21 35 35 21 7 1 128 9 1 8 28 56 70 56 28 8 1 256 10 1 9 36 84 126 126 84 36 9 1 512
This is Pascal’s table. (aka Binomial coefficients table)
Thank you, Kubikulann! You are not only very smart, but apparently you know/remember more math than most of us, lol.
Well, Pascal's Triangle/Table has all the qualities we have been noticing. As Unjon pointed out, every table entry is the sum of two table entries above it. As I pointed out, every entry can be calculated independently as combin(n,k) and that the rows in the table, as I compiled it, sum to 2n. Its a remarkable triangle/table and has been very well studied and characterized by zillions of mathematicians.
RECAP
I arrived at Pascal's table by creating Table A - the table of partitions of N that are of length L, because we can sum across the rows to get the total partitions of N. Table A can be created readily by using recursive methods on a spreadsheet or in a computer program, so if you want to know the number of partitions of any N, you must first calculate rows 1...N-1 of the table. We are seeking a non-recursive way to calculate the partitions of any given N>
So, I created Table B -which for any given N,L is the sum of the permutations (Rearrangements in a linear sequence) of all the partitions of N that are length L. I was hoping this table might have entries that could be calculated directly and might be an intermediate step to directly calculating any row of Table A. And, eureka!, the Table B is the well-known Pascal's Table and every entry is indeed directly calculable as being combin(N,L).
So, can we use the value of an N,L entry in Pascal's table to derive the value of an N,L entry in Table A? I have started to work on that and my preliminary conclusion is that we will need to know the number of partitions for 1 to N-1 in order to go from the Nth row in Pascal's table to the Nth row in Table A. That is, we probably need to do the identical amount of work as the recursion method for calculating partitions. So, right now, starting with a row in Table B (Pascal's table) and deriving a row in Table A doesn't look like a promising approach.
I guess the thing to try next is to see whether there is a way of directly calculating all the entries in a Row in Table A. Obviously, seeking a non-recursive (direct) algorithm for calculating partitions of any given N is a very difficult problem.
Piece | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 4 | 7 | 12 | 19 | 30 | 45 | 67 | 97 |
2 | 1 | 1 | 3 | 4 | 8 | 11 | 19 | 26 | 41 | |
3 | 1 | 1 | 2 | 4 | 6 | 9 | 15 | 21 | ||
4 | 1 | 1 | 2 | 3 | 6 | 8 | 13 | |||
5 | 1 | 1 | 2 | 3 | 5 | 8 | ||||
6 | 1 | 1 | 2 | 3 | 5 | |||||
7 | 1 | 1 | 2 | 3 | ||||||
8 | 1 | 1 | 2 | |||||||
9 | 1 | 1 | ||||||||
10 | 1 | |||||||||
Total | 1 | 3 | 6 | 12 | 20 | 35 | 54 | 86 | 128 | 192 |
Offhand, the only interesting pattern I'm seeing is the total number of pieces generally divide lots of ways:
6 = 2*3
12 = 2*2*3
20 =2*2*5
35 = 5*7
54 = 2*3*3*3
86 = 2 * 43
128 = 2*2*2*2*2*2*2
192 = 2*2*2*2*2*2*3
I guess 86 is the exception.