Thread Rating:

Poll

7 votes (41.17%)
No votes (0%)
2 votes (11.76%)
2 votes (11.76%)
2 votes (11.76%)
6 votes (35.29%)
No votes (0%)
4 votes (23.52%)
2 votes (11.76%)
1 vote (5.88%)

17 members have voted

Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
Thanked by
Zuga
August 14th, 2019 at 12:39:04 AM permalink
I've been thinking about partions off and on lately. If the term sounds familiar, it was at the center of the movie The Man Who Knew Infinity.

If you didn't see the movie, it is the number of ways you can break down an integer into other integers of lesser or equal size. For example, let's say a blackjack dealer has chips in denominations from $1 to $5. You ask to break down a $5 chip and she asks "how?" How many ways can it be done?

The answer is 7:

1-1-1-1-1
2-1-1-1
2-2-1
3-1-1
3-2
4-1
5

Granted, getting another $5 chip back isn't breaking it down, but to be consistent, it counts as a partition.

I wrote both a spreadsheet and a program to get at answers for large numbers. Here they are for 1 to 405. At 406, I exceed the size of a 64-bit unsigned integer.



TotalPartitions
11
22
33
45
57
611
715
822
930
1042
1156
1277
13101
14135
15176
16231
17297
18385
19490
20627
21792
221002
231255
241575
251958
262436
273010
283718
294565
305604
316842
328349
3310143
3412310
3514883
3617977
3721637
3826015
3931185
4037338
4144583
4253174
4363261
4475175
4589134
46105558
47124754
48147273
49173525
50204226
51239943
52281589
53329931
54386155
55451276
56526823
57614154
58715220
59831820
60966467
611121505
621300156
631505499
641741630
652012558
662323520
672679689
683087735
693554345
704087968
714697205
725392783
736185689
747089500
758118264
769289091
7710619863
7812132164
7913848650
8015796476
8118004327
8220506255
8323338469
8426543660
8530167357
8634262962
8738887673
8844108109
8949995925
9056634173
9164112359
9272533807
9382010177
9492669720
95104651419
96118114304
97133230930
98150198136
99169229875
100190569292
101214481126
102241265379
103271248950
104304801365
105342325709
106384276336
107431149389
108483502844
109541946240
110607163746
111679903203
112761002156
113851376628
114952050665
1151064144451
1161188908248
1171327710076
1181482074143
1191653668665
1201844349560
1212056148051
1222291320912
1232552338241
1242841940500
1253163127352
1263519222692
1273913864295
1284351078600
1294835271870
1305371315400
1315964539504
1326620830889
1337346629512
1348149040695
1359035836076
13610015581680
13711097645016
13812292341831
13913610949895
14015065878135
14116670689208
14218440293320
14320390982757
14422540654445
14524908858009
14627517052599
14730388671978
14833549419497
14937027355200
15040853235313
15145060624582
15249686288421
15354770336324
15460356673280
15566493182097
15673232243759
15780630964769
15888751778802
15997662728555
160107438159466
161118159068427
162129913904637
163142798995930
164156919475295
165172389800255
166189334822579
167207890420102
168228204732751
169250438925115
170274768617130
171301384802048
172330495499613
173362326859895
174397125074750
175435157697830
176476715857290
177522115831195
178571701605655
179625846753120
180684957390936
181749474411781
182819876908323
183896684817527
184980462880430
1851071823774337
1861171432692373
1871280011042268
1881398341745571
1891527273599625
1901667727404093
1911820701100652
1921987276856363
1932168627105469
1942366022741845
1952580840212973
1962814570987591
1973068829878530
1983345365983698
1993646072432125
2003972999029388
2014328363658647
2024714566886083
2035134205287973
2045590088317495
2056085253859260
2066622987708040
2077206841706490
2087840656226137
2098528581302375
2109275102575355
21110085065885767
21210963707205259
21311916681236278
21412950095925895
21514070545699287
21615285151248481
21716601598107914
21818028182516671
21919573856161145
22021248279009367
22123061871173849
22225025873760111
22327152408925615
22429454549941750
22531946390696157
22634643126322519
22737561133582570
22840718063627362
22944132934884255
23047826239745920
23151820051838712
23256138148670947
23360806135438329
23465851585970275
23571304185514919
23677195892663512
23783561103925871
23890436839668817
23997862933703585
240105882246722733
241114540884553038
242123888443077259
243133978259344888
244144867692496445
245156618412527946
246169296722391554
247182973889854026
248197726516681672
249213636919820625
250230793554364681
251249291451168559
252269232701252579
253290726957916112
254313891991306665
255338854264248680
256365749566870782
257394723676655357
258425933084409356
259459545750448675
260495741934760846
261534715062908609
262576672674947168
263621837416509615
264670448123060170
265722760953690372
266779050629562167
267839611730366814
268904760108316360
269974834369944625
2701050197489931117
2711131238503938606
2721218374349844333
2731312051800816215
2741412749565173450
2751520980492851175
2761637293969337171
2771762278433057269
2781896564103591584
2792040825852575075
2802195786311682516
2812362219145337711
2822540952590045698
2832732873183547535
2842938929793929555
2853160137867148997
2863397584011986773
2873652430836071053
2883925922161489422
2894219388528587095
2904534253126900886
2914872038056472084
2925234371069753672
2935622992691950605
2946039763882095515
2956486674127079088
2966965850144195831
2977479565078510584
2988030248384943040
2998620496275465025
3009253082936723602
3019930972392403501
30210657331232548839
30311435542077822104
30412269218019229465
30513162217895057704
30614118662665280005
30715142952738857194
30816239786535829663
30917414180133147295
31018671488299600364
31120017426762576945
31221458096037352891
31323000006655487337
31424650106150830490
31526415807633566326
31628305020340996003
31730326181989842964
31832488293351466654
31934800954869440830
32037274405776748077
32139919565526999991
32242748078035954696
32345772358543578028
32449005643635237875
32552462044228828641
32656156602112874289
32760105349839666544
32864325374609114550
32968834885946073850
33073653287861850339
33178801255302666615
33284300815636225119
33390175434980549623
33496450110192202760
335103151466321735325
336110307860425292772
337117949491546113972
338126108517833796355
339134819180623301520
340144117936527873832
341154043597379576030
342164637479165761044
343175943559810422753
344188008647052292980
345200882556287683159
346214618299743286299
347229272286871217150
348244904537455382406
349261578907351144125
350279363328483702152
351298330063062758076
352318555973788329084
353340122810048577428
354363117512048110005
355387632532919029223
356413766180933342362
357441622981929358437
358471314064268398780
359502957566506000020
360536679070310691121
361572612058898037559
362610898403751884101
363651688879997206959
364695143713458946040
365741433159884081684
366790738119649411319
367843250788562528427
368899175348396088349
369958728697912338045
3701022141228367345362
3711089657644424399782
3721161537834849962850
3731238057794119125085
3741319510599727473500
3751406207446561484054
3761498478743590581081
3771596675274490756791
3781701169427975813525
3791812356499739472950
3801930656072350465812
3812056513475336633805
3822190401332423765131
3832332821198543892336
3842484305294265418180
3852645418340688763701
3862816759503217942792
3872998964447736452194
3883192707518433532826
3893398704041358160275
3903617712763867604423
3913850538434667429186
3924098034535626594791
3934361106170762284114
3944640713124699623515
3954937873096788191655
3965253665124416975163
3975589233202595404488
3985945790114707874597
3996324621482504294325
4006727090051741041926
4017154640222653942321
4027608802843339879269
4038091200276484465581
4048603551759348655060
4059147679068859117602



I'll put my code in spoiler tags, if anyone wants to tackle this as a programming exercise.




void partitions(int max_series)
{
int i,j,k;
unsigned __int64 tot;
for (i=0; i<=1000; i++)
for (j=0; j<=1000; j++)
partition_array
=0;
partition_array[1][0]=1;
for (i=2; i<=max_series; i++)
{
for (j=1; j<=i; j++) // first column
{
if (j*2<i) // less than half of total
{
tot=0;
for (k=1; k<=j; k++)
tot+=partition_array[i-j][k];
partition_array
=tot;
}
else if (j==i)
partition_array
=1;
else
partition_array
=partition_array[i-j][0];
partition_array[0]+=partition_array
;
}
printf("%i\t%I64i\n",i,partition_array[0]);
}
}



All that said, I'm not sure what my question is. Has anyone else messed with this? Please don't just plop in a Numberfile video and call it a day, let's try to have a discussion.

One of the mysteries of mathematics is a simple formula to the number of partitions of x, that doesn't just sum partitions of smaller numbers (as I did). As the movie I linked to goes into, Srinivasa Ramanujan found some relationships between a number and its number of partitions.

The question for the poll is how do you feel about partitions?
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
AcesAndEights
AcesAndEights
  • Threads: 67
  • Posts: 4300
Joined: Jan 5, 2012
August 14th, 2019 at 4:49:41 AM permalink
A similar concept is sometimes used as an interview question for software development roles. "Given standard USA coins, write a function that will take a dollar amount and return the number of different ways you can make that dollar amount in coins." I think I tried to solve it with recursion, but iteration would work too. Your function is also printing out the combinations which wasn't a requirement the one time I was asked this.

Because I hate interviewing, I don't feel good about partitions :P
"So drink gamble eat f***, because one day you will be dust." -ontariodealer
rsactuary
rsactuary
  • Threads: 29
  • Posts: 2315
Joined: Sep 6, 2014
Thanked by
tringlomane
August 14th, 2019 at 7:26:08 AM permalink
I've been working on math behind the Grand Jackpot for the Lightning Link / Dragon Link games and I had to research and use partitions in that. Crazy that you mention it right now, because I'm about ready to share my work if anyone is interested.
Ayecarumba
Ayecarumba
  • Threads: 236
  • Posts: 6763
Joined: Nov 17, 2009
August 14th, 2019 at 10:53:38 AM permalink
Not sure how helpful this is, but here is a link to an article on Discovery.com that indicates something is there waiting to be described.
Simplicity is the ultimate sophistication - Leonardo da Vinci
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
Thanked by
tringlomane
August 14th, 2019 at 11:06:56 AM permalink
Quote: rsactuary

I'm about ready to share my work if anyone is interested.



I'm interested.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
rsactuary
rsactuary
  • Threads: 29
  • Posts: 2315
Joined: Sep 6, 2014
August 14th, 2019 at 11:32:20 AM permalink
PM me an email address? We might need to get on the phone for me to walk you through it. It's a LOT of math.
tringlomane
tringlomane
  • Threads: 8
  • Posts: 6284
Joined: Aug 25, 2012
August 14th, 2019 at 9:21:28 PM permalink
Quote: Wizard

I'm interested.



I would also be interested.
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
Thanked by
tringlomanecharliepatrick
August 14th, 2019 at 9:37:54 PM permalink
I have recently been doing some analytical/theoretical work on partitions, although going in a completely different direction than you have. I'm writing it up in a way suitable for WOV and I'll try to post some of it in a day or two and hope for some feedback.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
rsactuary
rsactuary
  • Threads: 29
  • Posts: 2315
Joined: Sep 6, 2014
Thanked by
tringlomane
August 14th, 2019 at 10:09:25 PM permalink
Quote: tringlomane

I would also be interested.



Let me run it by Wiz and see what he thinks. I stress that it is strictly a theoretical exercise as there are too many unknowns without the PAR sheets to be able to apply it.
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 15th, 2019 at 9:33:30 AM permalink
I noticed the total number of partitions is often prime or primey* . Just look at the first five total partitions: 2,3,5,7,11.

That caused me to factor the number of partitions to see how primey they were.


n Partitions of n Factorization of Partitions of n
222
333
455
577
61111
7153,5
8222,11
9302,3,5
10422,3,7
11562,2,2,7
12777,11
13101101
141353,3,3,5
151762,2,2,2,11
162313,7,11
172973,3,3,11
183855,7,11
194902,5,7,7
206273,11,19
217922,2,2,3,3,11
2210022,3,167
2312555,251
2415753,3,5,5,7
2519582,11,89
2624362,2,3,7,29
2730102,5,7,43
2837182,11,13,13
2945655,11,83
3056042,2,3,467
3168422,11,311
3283493,11,11,23
33101433,3,7,7,23
34123102,5,1231
35148833,11,11,41
361797717977
37216377,11,281
38260155,11,11,43
39311853,3,3,3,5,7,11
40373382,3,7,7,127
41445833,7,11,193
42531742,11,2417
43632613,3,3,3,11,71
44751755,5,31,97
45891342,41,1087
461055582,3,73,241
471247542,7,7,19,67
481472733,7,7013
491735255,5,11,631
502042262,11,9283
512399433,11,11,661
522815893,7,11,23,53
533299313,3,7,5237
543861555,7,11,17,59
554512762,2,7,71,227
5652682311,47,1019
576141542,3,102359
587152202,2,5,11,3251
598318202,2,5,11,19,199
6096646717,139,409
6111215053,5,7,11,971
6213001562,2,11,13,2273
6315054993,113,4441
6417416302,5,11,71,223
6520125582,1006279
6623235202,2,2,2,2,2,5,53,137
6726796891181,2269
6830877353,5,7,7,4201
6935543455,641,1109
7040879682,2,2,2,2,3,97,439
7146972053,5,313147
72539278311,139,3527
73618568923,131,2053
7470895002,2,5,5,5,11,1289
7581182642,2,2,3,7,11,23,191
7692890917,1327013
771061986310619863
78121321642,2,11,103,2677
79138486502,5,5,173,1601
80157964762,2,3,3,227,1933
811800432711,1636757
82205062555,7,7,7,11,1087
83233384697,11,303097
84265436602,2,5,11,13,9281
853016735711,11,249317
86342629622,23,37,41,491
873888767311,3535243
88441081093,3,83,137,431
89499959255,5,7,7,40813
90566341732473,22901
916411235929,373,5927
92725338073371,21517
938201017759,1390003
94926697202,2,2,5,11,13,17,953
95104651419283,369793
961181143042,2,2,2,2,2,2,2,2,2,2,7,7,11,107
971332309302,3,5,7,29,131,167
981501981362,2,2,11,1706797
991692298755,5,5,1353839
1001905692922,2,43,59,89,211
1012144811262,31,3459373
1022412653793,2423,33191
1032712489502,5,5,7,774997
1043048013653,5,11,1847281
10534232570911,43,43,16831
1063842763362,2,2,2,3,8005757
1074311493893,11,173,75521
1084835028442,2,11,10988701
1095419462402,2,2,2,2,2,2,5,11,23,3347
1106071637462,7,4049,10711
1116799032033,7,67,483229
1127610021562,2,190250539
1138513766282,2,212844157
1149520506655,193,986581
11510641444513,61,67,229,379
11611889082482,2,2,11,11,157,7823
11713277100762,2,7,7,11,615821
118148207414311,197,827,827
11916536686655,11,30066703
12018443495602,2,2,5,47,981037
1212056148051461,4460191
12222913209122,2,2,2,9013,15889
123255233824179,32308079
12428419405002,2,3,5,5,5,7,31,8731
12531631273522,2,2,3,7,11,59,67,433
12635192226922,2,89,379,26083
12739138642955,11,67,1062107
12843510786002,2,2,5,5,11,17,317,367
12948352718702,3,3,5,11,13,157,2393
13053713154002,2,2,5,5,11,157,15551
13159645395042,2,2,2,7,7,7,11,29,3407
13266208308896620830889
13373466295122,2,2,3,3,1319,77359
13481490406955,17,89,1077203
13590358360762,2,59,569,67289
136100155816802,2,2,2,5,13,31,41,7577
137110976450162,2,2,17,1367,59693
138122923418313,3,7,7,11,733,3457
139136109498955,79,34458101
140150658781355,7,11,39132151
141166706892082,2,2,29,31,991,2339
142184402933202,2,2,3,3,5,127,403331
143203909827577589,2686913
144225406544455,5807,776327
145249088580097,7,53,73,83,1583
1462751705259953197,517267
147303886719782,3,7,24151,29959
1483354941949711,73,41780099
149370273552002,2,2,2,2,2,5,5,11,11,11,17387
1504085323531311,17,197,1108967
151450606245822,3,7510104097
152496862884217,11,751,859223
153547703363242,2,11,34513,36067
154603566732802,2,2,2,2,2,2,2,5,37,1274423
1556649318209719,8087,432749
15673232243759463,1777,89009
1578063096476980630964769
158887517788022,79,691,853,953
159976627285555,7,29,67,1436111
1601074381594662,3,3,11,443,1224869
161118159068427797,148254791
1621299139046373,3,11,127,10332769
1631427989959302,3,5,4759966531
1641569194752953,3,5,11,14867,21323
1651723898002555,313,1543,71389
1661893348225797,7,37,53,1277,1543
1672078904201022,19,73,503,148991
168228204732751228204732751
1692504389251153,3,3,5,1855103149
1702747686171302,5,7,47,83516297
1713013848020482,2,2,2,2,2,2,2,11,11,1609,6047
172330495499613103,2351,1364821
1733623268598953,5,7,11,13,37,652189
1743971250747502,5,5,5,103,1627,9479
1754351576978302,5,43515769783
1764767158572902,5,443,107610803
1775221158311955,7,97,153789641
1785717016056553,5,17,2241967081
1796258467531202,2,2,2,2,5,277,3467,4073
1806849573909362,2,2,3,7,7,13,59,643,1181
1817494744117813,249824803927
18281987690832311,23,27967,115873
18389668481752761,293,50169799
1849804628804302,5,11,107,83301859
18510718237743373469,6653,46441
18611714326923731171432692373
18712800110422682,2,7,7,18713,348991
18813983417455711398341745571
18915272735996253,3,3,3,5,5,5,61,127,19471
1901667727404093317,7283,722363
19118207011006522,2,3,7,11171,1940293
192198727685636323,503,171776027
19321686271054693,11,71,269,3440807
19423660227418455,7,7,521,18535961
19525808402129733,11,78207279181
19628145709875913,11,89,958314943
19730688298785302,5,13,43,257,2136131
19833453659836982,3,3,185853665761
19936460724321253,3,5,5,5,3240953273
20039729990293882,2,3,331083252449
20143283636586477,19,23,47,4441,6779
20247145668860833,837673,1876057
2035134205287973151,34001359523
20455900883174955,11,19,5349366811
20560852538592602,2,5,304262692963
20666229877080402,2,2,5,11,15052244791
20772068417064902,3,3,5,829,5399,17891
20878406562261373,7,373364582197
20985285813023753,5,5,5,19,197,2083,2917
21092751025753555,487,1091,3491363
211100850658857673,17,61,227,14280811
2121096370720525910963707205259
213119166812362782,7,13,31,79,131,409,499
214129500959258953,5,2351,7573,48491
215140705456992877,7,11,11,23497,100999
2161528515124848115285151248481
217166015981079142,2140069,3878753
2181802818251667153,340154387107
219195738561611455,11,13,313,87463331
220212482790093673,7082759669789
221230618711738493,223,138283,249287
222250258737601113,7,17,1259,55679497
223271524089256153,5,23,353,4801,46439
224294545499417502,5,5,5,16301,7227667
225319463906961573,7,37,97,2887,146819
226346431263225193,11,13,13,79,78630193
227375611335825702,5,13,173,449,3719657
228407180636273622,11,23,80470481477
229441329348842555,7,7,191,943112189
230478262397459202,2,2,2,2,2,2,5,109843,680321
231518200518387122,2,2,3,59,59,620272573
232561381486709473,7,32009,83515423
23360806135438329307,347,9749,58549
234658515859702755,5,7,376294776973
235713041855149197,10186312216417
236771958926635122,2,2,7,7,263,748776797
2378356110392587111,11,13,17,677,4615703
238904368396688173,7591,3971230829
239978629337035853,5,1114697,5852887
2401058822467227333,13,13,83,2516153293
2411145408845530382,57270442276519
2421238884430772597,31,570914484227
2431339782593448882,2,2,7,7,97,5783,609289
2441448676924964455,14813,1955953453
2451566184125279462,4007,19543101139
2461692967223915542,431,18433,10654799
2471829738898540262,77899,1174430287
2481977265166816722,2,2,11,79,28441673861
2492136369198206253,3,3,5,5,5,5,7,277,6529121
2502307935543646813,7,11,10037,99542323
251249291451168559887,281050114057
2522692327012525794177,64455997427
2532907269579161122,2,2,2,53,73,4696416353
2543138919913066655,17,643,9649,595207
2553388542642486802,2,2,5,631,859,1429,10937
2563657495668707822,91381,2001234211
2573947236766553573,7,18796365555017
2584259330844093562,2,545863,195073253
2594595457504486753,5,5,11,234197,2378447
2604957419347608462,31,53,150864861461
26153471506290860911,41,349,20389,166619
2625766726749471682,2,2,2,2,19,439,2160534839
2636218374165096155,419,29867,9938051
2646704481230601702,5,7,7,13,41,1907,1346143
2657227609536903722,2,419,8167,52802941
2667790506295621673,3,3,28853727020821
2678396117303668142,3,53,6857,385050089
2689047601083163602,2,2,3,3,5,2513222523101
2699748343699446255,5,5,173,45079046009
27010501974899311173,11,83,47309,8104667
27111312385039386062,7,3041,26571111569
272121837434984433311,317333,349038091
27313120518008162155,499,2003,9829,26711
27414127495651734502,5,5,7,7,173,4327,770311
27515209804928511755,5,60839219714047
2761637293969337171167,1777,1931,2857199
27717622784330572693,3,29,6752024647729
27818965641035915842,2,2,2,2,3,7,7,7,23,2504230711
27920408258525750755,5,373,218855319311
28021957863116825162,2,7,389,3853,52321891
28123622191453377113,11,37,983809,1966499
28225409525900456982,29,59,619,1199570861
28327328731835475355,7,7,53,210463857031
28429389297939295553,5,790189,247951633
28531601378671489977,7,7,52517,175433287
28633975840119867733,3,3,7,43,547,764280217
287365243083607105373,50033299124261
28839259221614894222,3,103,2162249,2937971
28942193885285870953,5,263,1069553492671
29045342531269008862,3,227,9349,356093047
29148720380564720842,2,1218009514118021
29252343710697536722,2,2,7,7,11,97,223,56118901
29356229926919506055,7087043,158683747
29460397638820955155,11,13,73,1187,7027,13873
29564866741270790882,2,2,2,461,1033,851335711
29669658501441958313,7,83,5783,691072399
29774795650785105842,2,2,3,3,3413,6971,4366289
29880302483849430402,2,2,2,2,2,3,5,4801,1742312449
29986204962754650255,5,7,17,2897645806879
30092530829367236022,137,1021,33075784213
30199309723924035013,6491,509986771037
3021065733123254883910657331232548839
303114355420778221042,2,2,11,53,2451874373461
304122692180192294653,5,7,257,617,1249,589993
305131622178950577042,2,2,11,117101,1277279083
306141186626652800055,7,23,67,79,2357,1405841
307151429527388571942,3,3,41,607,33803799259
3081623978653582966311149,68473,21272819
309174141801331472955,12650773,275306183
310186714882996003642,2,181,503,51271070537
311200174267625769455,13,31,199,33479,1491103
312214580960373528917,15493,217027,911683
313230000066554873377,7,7,41,1635497877799
314246501061508304902,3,3,5,11,59,422018595289
315264158076335663262,691,1609,11879544977
316283050203409960033,3,11,113,233,10859101993
317303261819898429642,2,557,44111,308571383
318324882933514666542,13,3881,321965922259
319348009548694408302,3,5,7,165718832711623
320372744057767480777,109,48852432210679
321399195655269999917,5702795075285713
322427480780359546962,2,2,3,37,48139727517967
323457723585435780282,2,47279,415343,582731
324490056436352378755,5,5,17,19,1213762071461
3255246204422882864111,79,1013,38749,1537997
3265615660211287428913,701,6162251960153
327601053498396665442,2,2,2,7,7,17,79,277,283,728207
328643253746091145502,5,5,73,17623390303867
329688348859460738502,5,5,523,661673,3978263
330736532878618503393,24551095953950113
331788012553026666155,463,701,1033,1069,43973
3328430081563622511929,31,151,37447,16583573
3339017543498054962329,67,149,2819,110492831
334964501101922027602,2,2,5,7,7,43,61,86981,215687
3351031514663217353255,5,13,12161,26098933241
3361103078604252927722,2,3,11,41,341743,59641567
3371179494915461139722,2,20533,1436096668121
3381261085178337963555,11,13,176375549417897
3391348191806233015202,2,2,2,3,5,561746585930423
3401441179365278738322,2,2,3,3,3,109,6121217147803
3411540435973795760302,3,5,7,7,1079531,97071379
3421646374791657610442,2,3,3,19,8761,27473812231
34317594355981042275323,76253,178897,560771
3441880086470522929802,2,5,10937,617657,1391561
34520088255628768315979,113,1156801,19452617
3462146182997432862997,5923,28069,184416611
3472292722868712171502,3,3,3,5,5,11,2311,9257,721697
3482449045374553824062,3,7,17,23,14913197993873
3492615789073511441255,5,5,23,523,173965521557
3502793633284837021522,2,2,3,47,349,997,711770053
3512983300630627580762,2,3,7,106783,33259492333
3523185559737883290842,2,3391,382231,61442951
3533401228100485774282,2,3,239,118592332652921
3543631175120481100053,5,29,47,67,971,273002137
3553876325329190292237,24113,2296523706353
3564137661809333423622,101,3557,15199,37888267
3574416229819293584373,13,13,871051246408991
3584713140642683987802,2,3,3,3,5,11,11,13,401,1383705109
3595029575665060000202,2,5,101,349,104459,6829811
36053667907031069112111,14423,3382722484357
3615726120588980375593,3,131,485676046563221
3626108984037518841017,7,4793,2601150503293
3636516888799972069593,433,4793,104670363037
3646951437134589460402,2,2,5,43,4171819,96877003
3657414331598840816842,2,3,2137,89491,323077621
366790738119649411319790738119649411319
367843250788562528427599,1237,1138047093529
36889917534839608834973,101,179,382429,1781543
3699587286979123380453,5,7,11,751,1105283803889
37010221412283673453622,49556849,10312814969
37110896576444243997822,71,7673645383270421
37211615378348499628502,3,3,5,5,7,547,757,890511641
37312380577941191250853,5,683,722639,167227447
37413195105997274735002,2,3,5,5,5,983,1831,5101,95813
37514062074465614840542,3347,210069830678441
37614984787435905810817,7,431,1949,66863,544477
37715966752744907567912389,16197169,41263051
37817011694279758135255,5,197,331031,1043452463
37918123564997394729502,5,5,73,127,5081,769480909
38019306560723504658122,2,11,43878547098874223
38120565134753366338053,5,227,2801473,215589697
38221904013324237651313,11,66375797952235307
38323328211985438923362,2,2,2,7,7,53,227,177043,1396963
38424843052942654181802,2,5,31,997,4019001026087
385264541834068876370143,11738107,5241165101
38628167595032179427922,2,2,67,2333,8963,12421,20233
38729989644477364521942,131,1607,14149,14449,34841
38831927075184335328262,1596353759216766413
38933987040413581602755,5,13,43,20921,11624628749
39036177127638676044237,7,25439,2902271029993
39138505384346674291862,11,37717,4640466482039
39240980345356265947913,3,137,167,619,32151809299
39343611061707622841142,367,569,1283,21487,378779
39446407131246996235153,5,17,359,78401,646589267
39549378730967881916555,6553,46451,3244402177
39652536651244169751633,3,49789639,11724137413
39755892332025954044882,2,2,7,23,31,37,3783318894683
39859457901147078745973,3,660643346078652733
39963246214825042943253,3,5,5,191,147169784351467
40067270900517410419262,23869,140916880718527
401715464022265394232171,2381,151273,279774827
40276088028433398792693,11,7151,32243012604043
40380912002764844655817,3911,10093,29282410321
40486035517593486550602,2,5,7,61453941138204679
40591476790688591176022,3,34286363,44467043009


* To coin my own term, meaning to have rather few factors, compared to the size of the number. Is there a more technical term for this, and please don't say "relatively prime."
Last edited by: Wizard on Aug 15, 2019
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
Thanked by
rsactuarytringlomane
August 15th, 2019 at 12:20:40 PM permalink
To respond to my last post, I noticed that quite often the number of partitions was evenly divisible by 11. Here is a count of how often the total partitions are divisible by 2, 3, 5, 7, and 11, starting with total equal to that divisor and up to as far as Excel would let me.

Divisor Yes No Ratio Expected
2 44 57 43.6% 50.0%
3 37 66 35.9% 33.3%
5 35 72 32.7% 20.0%
7 33 76 30.3% 14.3%
11 52 60 46.4% 9.1%


If the number of partitions were random, you would expect 1 in 11 totals to be divisible by 11, or 9.1%. Instead we have 46.4%.

"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
TomG
TomG
  • Threads: 16
  • Posts: 2459
Joined: Sep 26, 2010
August 15th, 2019 at 5:41:53 PM permalink
5, 7, 9, 11, 12, 15, 16, 18, 20, 21, 24, 25, 26, 29, 30, 32, 33, 35 -- that's how many integers there are for each number of digits in each partition (if that makes sense). There are five integers with one digit, seven with two, nine with three. The rate of growth is fairly predictable. Good estimates for the number of partitions of n can be done with very little computing power, if someone wants to try,
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 15th, 2019 at 9:05:39 PM permalink
Quote: TomG

5, 7, 9, 11, 12, 15, 16, 18, 20, 21, 24, 25, 26, 29, 30, 32, 33, 35 -- that's how many integers there are for each number of digits in each partition (if that makes sense). There are five integers with one digit, seven with two, nine with three. The rate of growth is fairly predictable. Good estimates for the number of partitions of n can be done with very little computing power, if someone wants to try,



There is a formula, involving pi and e, of course, that is a very good predictor of number of partitions. However, there is nothing like finding exact patterns.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
FleaStiff
FleaStiff
  • Threads: 265
  • Posts: 14484
Joined: Oct 19, 2009
August 15th, 2019 at 10:10:28 PM permalink
the math is, of course, beyond me but this seems to be what dice dealers do. How many chips in what denominations will pay the various bets with sufficient speed and the fewest trips to his stacks to obtain different colors or to deplete the general supply of the most commonly used chips. When there are pumpkins, Barneys, blacks, greens, reds, and whites in play he has to pay different players in sequence with different hands and yet not delay the game.
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 16th, 2019 at 2:31:19 AM permalink
Here are the Ramanujan identities. Let P(x) = number of partitions of x.

P(5x + 4) is always divisible by 5
P(7x + 5) is always divisible by 7
P(11x + 6) is always divisible by 11

Here are a couple more that were discovered later:

P(17303x + 237) is always divisible by 13
P(206839x + 839) is always divisible by 17
P(1977147619x + 815655) is always divisible by 19

Makes you suspect there is another identity for the next prime, 23, but we haven't found it yet.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
August 16th, 2019 at 7:25:13 AM permalink
I do have a question about terminology.

Consider the 7 partitions of 5:

1-1-1-1-1
2-1-1-1
2-2-1, 3-1-1
4-1, 3-2
5

What is the terminology to describe the number of clumps or elements of a partition? I have been using "length," as in: the partitions listed above start with partitions of length 5, then length 4 and so on down to length 1. But I realize that is probably not the accepted term.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
ThatDonGuy
ThatDonGuy
  • Threads: 122
  • Posts: 6677
Joined: Jun 22, 2011
August 16th, 2019 at 7:39:00 AM permalink
Quote: Wizard

* To coin my own term, meaning to have rather few factors, compared to the size of the number. Is there a more technical term for this, and please don't say "relatively prime."


Especially as "relatively prime" refers to something completely different. (Two numbers are relatively prime if they do not share any prime factors, even if neither is prime. For example, 16 and 25 are relatively prime to each other. For that matter, any power of 2 and any odd number are relatively prime.)

More information on numbers of partitions than you probably want to know
RS
RS
  • Threads: 62
  • Posts: 8626
Joined: Feb 11, 2014
August 16th, 2019 at 7:53:32 AM permalink
If I'm understanding this correctly, your goal (or the "mystery of mathematics") is to find a simple formula for finding the number of partitions of x, without having to know the number of partitions of x-1?

Also, you wrote "partions" instead of "partitions" in your OP linking to wikipedia.


Speaking of numberphile, have you considered making videos like that? The only one I can think of is the video where you made BJ basic strategy in excel.
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
August 16th, 2019 at 8:48:37 AM permalink
Quote: Wizard

To respond to my last post, I noticed that quite often the number of partitions was evenly divisible by 11. Here is a count of how often the total partitions are divisible by 2, 3, 5, 7, and 11, starting with total equal to that divisor and up to as far as Excel would let me.

Divisor Yes No Ratio Expected
2 44 57 43.6% 50.0%
3 37 66 35.9% 33.3%
5 35 72 32.7% 20.0%
7 33 76 30.3% 14.3%
11 52 60 46.4% 9.1%


If the number of partitions were random, you would expect 1 in 11 totals to be divisible by 11, or 9.1%. Instead we have 46.4%.



That is interesting. What are the results for a divisor of 13?

I have taken all the primes from 2-1,000,000 and converted them into different bases/radices from 2-100+ and looked for frequency of integers in the digits (ignoring the first and last digit of each prime.) It is extraordinarily regular, with a digit frequency that has very little variance around the expected number. Given that as a background, I am surprised to see your large discrepancy in the frequency of divisor 11. It seems like it might be significant.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 16th, 2019 at 9:30:09 AM permalink
Quote: gordonm888

What is the terminology to describe the number of clumps or elements of a partition? I have been using "length," as in: the partitions listed above start with partitions of length 5, then length 4 and so on down to length 1. But I realize that is probably not the accepted term.



If there's a term for it, I don't know what it is. The way my math works is I keep track of the maximum height in any given partition. For example, the number of partitions in 100 equals:

P(100) = P(1) + P(2) + ... + P(50) (these are for the cases where the height of the longest stack is 50 to 100) + P(51,49) + P(52,48) + ... P (100,1),
where P(x,y) = Number of partitions where x is the total items and y is the maximum height of a stack.

For example if the height of the largest stack is 30, then there are 70 left, but you can't have a stack higher than 30.

Just one way of getting the answer by brute force.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 16th, 2019 at 9:37:15 AM permalink
Quote: gordonm888

What are the results for a divisor of 13?



Damn Excel doesn't handle big numbers very well, so my sample size is rather small:

Divisor Yes No Ratio Expected
2 44 57 43.6% 50.0%
3 37 66 35.9% 33.3%
5 35 72 32.7% 20.0%
7 33 76 30.3% 14.3%
11 52 60 46.4% 9.1%
13 4 109 3.5% 7.7%


So 13's are underrepresented. I think it is indeed significant how often 11 pops up and how often 13 does not.

I think I'll add more code to check the factorization for larger numbers. I can handle numbers up to 2^64 in C++. Projects like this make me jealous of the people who have Mathematica.

Quote:

I have taken all the primes from 2-1,000,000 and converted them into different bases/radices from 2-100+ and looked for frequency of integers in the digits (ignoring the first and last digit of each prime.) It is extraordinarily regular, with a digit frequency that has very little variance around the expected number. Given that as a background, I am surprised to see your large discrepancy in the frequency of divisor 11. It seems like it might be significant.



Can you show me a table to illustrate what you mean?
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
Thanked by
rsactuary
August 16th, 2019 at 4:18:57 PM permalink
I took the analysis of how often total partitions are divisible by a prime number up to an initial quantity of 405. Here are the results.

Prime Count in 2 to 405 Ratio Expected
2 181 44.8% 50.0%
3 139 34.4% 33.3%
5 139 34.4% 20.0%
7 101 25.0% 14.3%
11 108 26.7% 9.1%
13 25 6.2% 7.7%
17 17 4.2% 5.9%
23 18 4.5% 4.3%
29 11 2.7% 3.4%


This shows a huge surplus of total partitions divisible by 5, 7, and 11, especially 11. You may recall these are the same primes in the Ramanujan identities. Very interesting...
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
kubikulann
kubikulann
  • Threads: 27
  • Posts: 905
Joined: Jun 28, 2011
August 17th, 2019 at 1:53:07 PM permalink
« Primey »

- Semi-prime
- k-almost prime
- Sphenic number

https://en.wikipedia.org/wiki/Table_of_prime_factors?wprov=sfti1
Reperiet qui quaesiverit
rsactuary
rsactuary
  • Threads: 29
  • Posts: 2315
Joined: Sep 6, 2014
August 17th, 2019 at 3:43:43 PM permalink
A favor of the Wiz:

Can you run your code for partitions of 10, 11, 12, 13, 14 and 15 and PM or email the lists to me please? I don't have the software to run the code myself.
Last edited by: rsactuary on Aug 17, 2019
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
August 18th, 2019 at 9:21:24 PM permalink
Quote: Wizard

Can you show me a table to illustrate what you mean?



Sorry, I spent some time looking through my many spreadsheets and I didn't find the work that I had mentioned. I did find some spreadsheets with the primes from 3-19,997 converted into prime number radices (bases) so I used them to produce the (modest) results shown in the table below.

Explanation: This table is the frequency of digits (as shown in the first column) in prime numbers converted into base 2, 5, 7,and 11 - in which I only count the digits as they appear in the "2nd to last digit" and "3rd to last digit" of each prime number.

So in the 2nd row I am counting the frequency of digits 1-4 as they appear in all the primes from 29-19997, when those primes are written in Base 5 -and only counting the digits in the 5^3 and 5^2 columns of the prime numbers.

As an example the prime number 19,917 is written in base 5 as 1114202, so I count one "2" and one "0" as shown in bold in the number.
Digits
Base 3: 11-19997
Base 5: 29-19997
Base 7: 53-19997
Base 11: 127-19997
0
1492
885
661
410
1
1503
917
627
409
2
1517
916
633
394
3
898
634
412
4
885
649
396
5
641
404
6
645
414
7
417
8
423
9
388
10
393


This was just a quick effort to show the kind of work that I had done. The original work was on every prime less than 1,000,000 and the variance in the calculated frequencies of various digits seemed pretty damn small, as I remember it.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 19th, 2019 at 5:04:59 AM permalink
Quote: rsactuary

A favor of the Wiz:

Can you run your code for partitions of 10, 11, 12, 13, 14 and 15 and PM or email the lists to me please? I don't have the software to run the code myself.



Does this table not answer your question?



n Partitions of n Factorization of Partitions of n
222
333
455
577
61111
7153,5
8222,11
9302,3,5
10422,3,7
11562,2,2,7
12777,11
13101101
141353,3,3,5
151762,2,2,2,11
162313,7,11
172973,3,3,11
183855,7,11
194902,5,7,7
206273,11,19
217922,2,2,3,3,11
2210022,3,167
2312555,251
2415753,3,5,5,7
2519582,11,89
2624362,2,3,7,29
2730102,5,7,43
2837182,11,13,13
2945655,11,83
3056042,2,3,467
3168422,11,311
3283493,11,11,23
33101433,3,7,7,23
34123102,5,1231
35148833,11,11,41
361797717977
37216377,11,281
38260155,11,11,43
39311853,3,3,3,5,7,11
40373382,3,7,7,127
41445833,7,11,193
42531742,11,2417
43632613,3,3,3,11,71
44751755,5,31,97
45891342,41,1087
461055582,3,73,241
471247542,7,7,19,67
481472733,7,7013
491735255,5,11,631
502042262,11,9283
512399433,11,11,661
522815893,7,11,23,53
533299313,3,7,5237
543861555,7,11,17,59
554512762,2,7,71,227
5652682311,47,1019
576141542,3,102359
587152202,2,5,11,3251
598318202,2,5,11,19,199
6096646717,139,409
6111215053,5,7,11,971
6213001562,2,11,13,2273
6315054993,113,4441
6417416302,5,11,71,223
6520125582,1006279
6623235202,2,2,2,2,2,5,53,137
6726796891181,2269
6830877353,5,7,7,4201
6935543455,641,1109
7040879682,2,2,2,2,3,97,439
7146972053,5,313147
72539278311,139,3527
73618568923,131,2053
7470895002,2,5,5,5,11,1289
7581182642,2,2,3,7,11,23,191
7692890917,1327013
771061986310619863
78121321642,2,11,103,2677
79138486502,5,5,173,1601
80157964762,2,3,3,227,1933
811800432711,1636757
82205062555,7,7,7,11,1087
83233384697,11,303097
84265436602,2,5,11,13,9281
853016735711,11,249317
86342629622,23,37,41,491
873888767311,3535243
88441081093,3,83,137,431
89499959255,5,7,7,40813
90566341732473,22901
916411235929,373,5927
92725338073371,21517
938201017759,1390003
94926697202,2,2,5,11,13,17,953
95104651419283,369793
961181143042,2,2,2,2,2,2,2,2,2,2,7,7,11,107
971332309302,3,5,7,29,131,167
981501981362,2,2,11,1706797
991692298755,5,5,1353839
1001905692922,2,43,59,89,211
1012144811262,31,3459373
1022412653793,2423,33191
1032712489502,5,5,7,774997
1043048013653,5,11,1847281
10534232570911,43,43,16831
1063842763362,2,2,2,3,8005757
1074311493893,11,173,75521
1084835028442,2,11,10988701
1095419462402,2,2,2,2,2,2,5,11,23,3347
1106071637462,7,4049,10711
1116799032033,7,67,483229
1127610021562,2,190250539
1138513766282,2,212844157
1149520506655,193,986581
11510641444513,61,67,229,379
11611889082482,2,2,11,11,157,7823
11713277100762,2,7,7,11,615821
118148207414311,197,827,827
11916536686655,11,30066703
12018443495602,2,2,5,47,981037
1212056148051461,4460191
12222913209122,2,2,2,9013,15889
123255233824179,32308079
12428419405002,2,3,5,5,5,7,31,8731
12531631273522,2,2,3,7,11,59,67,433
12635192226922,2,89,379,26083
12739138642955,11,67,1062107
12843510786002,2,2,5,5,11,17,317,367
12948352718702,3,3,5,11,13,157,2393
13053713154002,2,2,5,5,11,157,15551
13159645395042,2,2,2,7,7,7,11,29,3407
13266208308896620830889
13373466295122,2,2,3,3,1319,77359
13481490406955,17,89,1077203
13590358360762,2,59,569,67289
136100155816802,2,2,2,5,13,31,41,7577
137110976450162,2,2,17,1367,59693
138122923418313,3,7,7,11,733,3457
139136109498955,79,34458101
140150658781355,7,11,39132151
141166706892082,2,2,29,31,991,2339
142184402933202,2,2,3,3,5,127,403331
143203909827577589,2686913
144225406544455,5807,776327
145249088580097,7,53,73,83,1583
1462751705259953197,517267
147303886719782,3,7,24151,29959
1483354941949711,73,41780099
149370273552002,2,2,2,2,2,5,5,11,11,11,17387
1504085323531311,17,197,1108967
151450606245822,3,7510104097
152496862884217,11,751,859223
153547703363242,2,11,34513,36067
154603566732802,2,2,2,2,2,2,2,5,37,1274423
1556649318209719,8087,432749
15673232243759463,1777,89009
1578063096476980630964769
158887517788022,79,691,853,953
159976627285555,7,29,67,1436111
1601074381594662,3,3,11,443,1224869
161118159068427797,148254791
1621299139046373,3,11,127,10332769
1631427989959302,3,5,4759966531
1641569194752953,3,5,11,14867,21323
1651723898002555,313,1543,71389
1661893348225797,7,37,53,1277,1543
1672078904201022,19,73,503,148991
168228204732751228204732751
1692504389251153,3,3,5,1855103149
1702747686171302,5,7,47,83516297
1713013848020482,2,2,2,2,2,2,2,11,11,1609,6047
172330495499613103,2351,1364821
1733623268598953,5,7,11,13,37,652189
1743971250747502,5,5,5,103,1627,9479
1754351576978302,5,43515769783
1764767158572902,5,443,107610803
1775221158311955,7,97,153789641
1785717016056553,5,17,2241967081
1796258467531202,2,2,2,2,5,277,3467,4073
1806849573909362,2,2,3,7,7,13,59,643,1181
1817494744117813,249824803927
18281987690832311,23,27967,115873
18389668481752761,293,50169799
1849804628804302,5,11,107,83301859
18510718237743373469,6653,46441
18611714326923731171432692373
18712800110422682,2,7,7,18713,348991
18813983417455711398341745571
18915272735996253,3,3,3,5,5,5,61,127,19471
1901667727404093317,7283,722363
19118207011006522,2,3,7,11171,1940293
192198727685636323,503,171776027
19321686271054693,11,71,269,3440807
19423660227418455,7,7,521,18535961
19525808402129733,11,78207279181
19628145709875913,11,89,958314943
19730688298785302,5,13,43,257,2136131
19833453659836982,3,3,185853665761
19936460724321253,3,5,5,5,3240953273
20039729990293882,2,3,331083252449
20143283636586477,19,23,47,4441,6779
20247145668860833,837673,1876057
2035134205287973151,34001359523
20455900883174955,11,19,5349366811
20560852538592602,2,5,304262692963
20666229877080402,2,2,5,11,15052244791
20772068417064902,3,3,5,829,5399,17891
20878406562261373,7,373364582197
20985285813023753,5,5,5,19,197,2083,2917
21092751025753555,487,1091,3491363
211100850658857673,17,61,227,14280811
2121096370720525910963707205259
213119166812362782,7,13,31,79,131,409,499
214129500959258953,5,2351,7573,48491
215140705456992877,7,11,11,23497,100999
2161528515124848115285151248481
217166015981079142,2140069,3878753
2181802818251667153,340154387107
219195738561611455,11,13,313,87463331
220212482790093673,7082759669789
221230618711738493,223,138283,249287
222250258737601113,7,17,1259,55679497
223271524089256153,5,23,353,4801,46439
224294545499417502,5,5,5,16301,7227667
225319463906961573,7,37,97,2887,146819
226346431263225193,11,13,13,79,78630193
227375611335825702,5,13,173,449,3719657
228407180636273622,11,23,80470481477
229441329348842555,7,7,191,943112189
230478262397459202,2,2,2,2,2,2,5,109843,680321
231518200518387122,2,2,3,59,59,620272573
232561381486709473,7,32009,83515423
23360806135438329307,347,9749,58549
234658515859702755,5,7,376294776973
235713041855149197,10186312216417
236771958926635122,2,2,7,7,263,748776797
2378356110392587111,11,13,17,677,4615703
238904368396688173,7591,3971230829
239978629337035853,5,1114697,5852887
2401058822467227333,13,13,83,2516153293
2411145408845530382,57270442276519
2421238884430772597,31,570914484227
2431339782593448882,2,2,7,7,97,5783,609289
2441448676924964455,14813,1955953453
2451566184125279462,4007,19543101139
2461692967223915542,431,18433,10654799
2471829738898540262,77899,1174430287
2481977265166816722,2,2,11,79,28441673861
2492136369198206253,3,3,5,5,5,5,7,277,6529121
2502307935543646813,7,11,10037,99542323
251249291451168559887,281050114057
2522692327012525794177,64455997427
2532907269579161122,2,2,2,53,73,4696416353
2543138919913066655,17,643,9649,595207
2553388542642486802,2,2,5,631,859,1429,10937
2563657495668707822,91381,2001234211
2573947236766553573,7,18796365555017
2584259330844093562,2,545863,195073253
2594595457504486753,5,5,11,234197,2378447
2604957419347608462,31,53,150864861461
26153471506290860911,41,349,20389,166619
2625766726749471682,2,2,2,2,19,439,2160534839
2636218374165096155,419,29867,9938051
2646704481230601702,5,7,7,13,41,1907,1346143
2657227609536903722,2,419,8167,52802941
2667790506295621673,3,3,28853727020821
2678396117303668142,3,53,6857,385050089
2689047601083163602,2,2,3,3,5,2513222523101
2699748343699446255,5,5,173,45079046009
27010501974899311173,11,83,47309,8104667
27111312385039386062,7,3041,26571111569
272121837434984433311,317333,349038091
27313120518008162155,499,2003,9829,26711
27414127495651734502,5,5,7,7,173,4327,770311
27515209804928511755,5,60839219714047
2761637293969337171167,1777,1931,2857199
27717622784330572693,3,29,6752024647729
27818965641035915842,2,2,2,2,3,7,7,7,23,2504230711
27920408258525750755,5,373,218855319311
28021957863116825162,2,7,389,3853,52321891
28123622191453377113,11,37,983809,1966499
28225409525900456982,29,59,619,1199570861
28327328731835475355,7,7,53,210463857031
28429389297939295553,5,790189,247951633
28531601378671489977,7,7,52517,175433287
28633975840119867733,3,3,7,43,547,764280217
287365243083607105373,50033299124261
28839259221614894222,3,103,2162249,2937971
28942193885285870953,5,263,1069553492671
29045342531269008862,3,227,9349,356093047
29148720380564720842,2,1218009514118021
29252343710697536722,2,2,7,7,11,97,223,56118901
29356229926919506055,7087043,158683747
29460397638820955155,11,13,73,1187,7027,13873
29564866741270790882,2,2,2,461,1033,851335711
29669658501441958313,7,83,5783,691072399
29774795650785105842,2,2,3,3,3413,6971,4366289
29880302483849430402,2,2,2,2,2,3,5,4801,1742312449
29986204962754650255,5,7,17,2897645806879
30092530829367236022,137,1021,33075784213
30199309723924035013,6491,509986771037
3021065733123254883910657331232548839
303114355420778221042,2,2,11,53,2451874373461
304122692180192294653,5,7,257,617,1249,589993
305131622178950577042,2,2,11,117101,1277279083
306141186626652800055,7,23,67,79,2357,1405841
307151429527388571942,3,3,41,607,33803799259
3081623978653582966311149,68473,21272819
309174141801331472955,12650773,275306183
310186714882996003642,2,181,503,51271070537
311200174267625769455,13,31,199,33479,1491103
312214580960373528917,15493,217027,911683
313230000066554873377,7,7,41,1635497877799
314246501061508304902,3,3,5,11,59,422018595289
315264158076335663262,691,1609,11879544977
316283050203409960033,3,11,113,233,10859101993
317303261819898429642,2,557,44111,308571383
318324882933514666542,13,3881,321965922259
319348009548694408302,3,5,7,165718832711623
320372744057767480777,109,48852432210679
321399195655269999917,5702795075285713
322427480780359546962,2,2,3,37,48139727517967
323457723585435780282,2,47279,415343,582731
324490056436352378755,5,5,17,19,1213762071461
3255246204422882864111,79,1013,38749,1537997
3265615660211287428913,701,6162251960153
327601053498396665442,2,2,2,7,7,17,79,277,283,728207
328643253746091145502,5,5,73,17623390303867
329688348859460738502,5,5,523,661673,3978263
330736532878618503393,24551095953950113
331788012553026666155,463,701,1033,1069,43973
3328430081563622511929,31,151,37447,16583573
3339017543498054962329,67,149,2819,110492831
334964501101922027602,2,2,5,7,7,43,61,86981,215687
3351031514663217353255,5,13,12161,26098933241
3361103078604252927722,2,3,11,41,341743,59641567
3371179494915461139722,2,20533,1436096668121
3381261085178337963555,11,13,176375549417897
3391348191806233015202,2,2,2,3,5,561746585930423
3401441179365278738322,2,2,3,3,3,109,6121217147803
3411540435973795760302,3,5,7,7,1079531,97071379
3421646374791657610442,2,3,3,19,8761,27473812231
34317594355981042275323,76253,178897,560771
3441880086470522929802,2,5,10937,617657,1391561
34520088255628768315979,113,1156801,19452617
3462146182997432862997,5923,28069,184416611
3472292722868712171502,3,3,3,5,5,11,2311,9257,721697
3482449045374553824062,3,7,17,23,14913197993873
3492615789073511441255,5,5,23,523,173965521557
3502793633284837021522,2,2,3,47,349,997,711770053
3512983300630627580762,2,3,7,106783,33259492333
3523185559737883290842,2,3391,382231,61442951
3533401228100485774282,2,3,239,118592332652921
3543631175120481100053,5,29,47,67,971,273002137
3553876325329190292237,24113,2296523706353
3564137661809333423622,101,3557,15199,37888267
3574416229819293584373,13,13,871051246408991
3584713140642683987802,2,3,3,3,5,11,11,13,401,1383705109
3595029575665060000202,2,5,101,349,104459,6829811
36053667907031069112111,14423,3382722484357
3615726120588980375593,3,131,485676046563221
3626108984037518841017,7,4793,2601150503293
3636516888799972069593,433,4793,104670363037
3646951437134589460402,2,2,5,43,4171819,96877003
3657414331598840816842,2,3,2137,89491,323077621
366790738119649411319790738119649411319
367843250788562528427599,1237,1138047093529
36889917534839608834973,101,179,382429,1781543
3699587286979123380453,5,7,11,751,1105283803889
37010221412283673453622,49556849,10312814969
37110896576444243997822,71,7673645383270421
37211615378348499628502,3,3,5,5,7,547,757,890511641
37312380577941191250853,5,683,722639,167227447
37413195105997274735002,2,3,5,5,5,983,1831,5101,95813
37514062074465614840542,3347,210069830678441
37614984787435905810817,7,431,1949,66863,544477
37715966752744907567912389,16197169,41263051
37817011694279758135255,5,197,331031,1043452463
37918123564997394729502,5,5,73,127,5081,769480909
38019306560723504658122,2,11,43878547098874223
38120565134753366338053,5,227,2801473,215589697
38221904013324237651313,11,66375797952235307
38323328211985438923362,2,2,2,7,7,53,227,177043,1396963
38424843052942654181802,2,5,31,997,4019001026087
385264541834068876370143,11738107,5241165101
38628167595032179427922,2,2,67,2333,8963,12421,20233
38729989644477364521942,131,1607,14149,14449,34841
38831927075184335328262,1596353759216766413
38933987040413581602755,5,13,43,20921,11624628749
39036177127638676044237,7,25439,2902271029993
39138505384346674291862,11,37717,4640466482039
39240980345356265947913,3,137,167,619,32151809299
39343611061707622841142,367,569,1283,21487,378779
39446407131246996235153,5,17,359,78401,646589267
39549378730967881916555,6553,46451,3244402177
39652536651244169751633,3,49789639,11724137413
39755892332025954044882,2,2,7,23,31,37,3783318894683
39859457901147078745973,3,660643346078652733
39963246214825042943253,3,5,5,191,147169784351467
40067270900517410419262,23869,140916880718527
401715464022265394232171,2381,151273,279774827
40276088028433398792693,11,7151,32243012604043
40380912002764844655817,3911,10093,29282410321
40486035517593486550602,2,5,7,61453941138204679
40591476790688591176022,3,34286363,44467043009
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 19th, 2019 at 5:05:49 AM permalink
Quote: gordonm888

Sorry, I spent some time looking through my many spreadsheets and I didn't find the work that I had mentioned. I did find some spreadsheets with the primes from 3-19,997 converted into prime number radices (bases) so I used them to produce the (modest) results shown in the table below...



Thank you. I can't think of a good comment offhand.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
Thanked by
Ajaxx
August 19th, 2019 at 8:30:28 AM permalink
In this and the following posts I briefly describe some of the research I am doing on partitions

Partitions in a linear sequence
It is well known that if you have 5 objects that you can partition them into these seven arrangements:
1-1-1-1-1; 2-1-1-1; 2-2-1; 3-1-1; 3-2; 4-1; 5

Now let’s consider the 13 ranks in a standard deck of cards, and for the moment let’s define an Ace to be a high card only. (Equivalently, we could define an ace as a low card only with identical results)
Given: All the various combinations of 5 cards of different rank, and ignoring the suits of the cards
Defining: a 5 card straight as 5 consecutive ranks, a 4 card straight as 4 consecutive ranks, etc. ranging down to a 1-card straight which is a card that has a rank with both adjacent ranks empty, let’s look at some combinations of 5 different ranks

Ex: QJ962. Graphically, this hand looks like this: __QJ_9__6___2. It is easy to see that it has one 2- card straight and three 1-card straights. An obvious way to label this hand (from a connect-ness or straightness point of view) is 2-1-1-1

Ex: T7654. Graphically, this hand is ____T__7654__. It is one 4-card straight and one 1-card straight, which we label as 4-1.
Clearly, all the “straight patterns” are equivalent to the partitions of 5, because we are literally filling 5 of 13 ‘slots’ and noting how the 5 objects are partitioned.

Again, in the cards analogy I am defining aces as either high or low, but not both. However, we can define a mathematical relationship that is more general than cards:

Define a linear string(or array) of 13 slots such that each of the 11 interior slots is each connected to two adjacent slots and such that the two end slots are only connected to one adjacent slot each. Now consider every possible combination of ways to populate the 13 slots with 5 objects. There will be c(13,5) =1287 different combinations of ways to populate the 13 slots with 5 objects.

Surprisingly, given this definition, we can calculate the number of combinations that correspond to the various partitions of 5, equivalently we say that we can calculate the frequencies or probability densities of the partitions of 5 when in a linear string (without loops) of 13 spaces.
Case
1-1-1-1-1
2-1-1-1
2-2-1
3-1-1
3-2
4-1
5
5 into 13, line
126
504
252
252
72
72
9


Of course, there is nothing fundamental about having a string length of 13. Here are some combination frequencies for partitions of 5 when the length of the string is 8-13 available slots.

Case
1-1-1-1-1
2-1-1-1
2-2-1
3-1-1
3-2
4-1
5
5 into 13, line
126
504
252
252
72
72
9
5 into 12, line
56
280
168
168
56
56
8
5 into 11, line
21
140
105
105
42
42
7
5 into 10, line
6
62
58
60
30
30
6
5 into 9, line
1
20
30
30
20
20
5
5 into 8, line
0
4
12
12
12
12
4


A couple of observations based on the above table:
1. The partitions 4-1 and 3-2 appear to be equally likely when 5 objects are placed in a linear string.
2. The “5 into 8” case shows an uncanny symmetry in the number of combinations for the partitions. I have yet to see anything that matches it in the various cases I have analyzed.

Partitions in a Closed Linear String
Consider the game Clock Solitaire where all 13 ranks are arrayed a circle. Further, define the existence of a “straight” in this circular configuration to include KA2 as a 3-card straight, QKA23 as a 5-card straight, etc. More generally consider a closed linear string such that the ends of the string are adjacent (as in a loop or circle) and such that every grid spot in the string has two connections; i.e. no ends.

Given this configuration, the partition frequencies are different as is shown in the table below.
Case
1-1-1-1-1
2-1-1-1
2-2-1
3-1-1
3-2
4-1
5
5 into 13, open line
141
497
244
252
72
72
9
5 into 13, closed (loop) line
92
455
272
274
91
90
13

The difference in these two cases has been illustrated by geometric differences in the configuration of the linear array, but the essential differences in the case arise not from geometry but from the definitions of adjacency or connect-ness.

Partitions of 3
The number 3 has the following three partitions: 1-1-1, 2-1, and 3. It’s a very simple set of partitions, but a good starting point for becoming familiar with this kind of analysis For game analysts, remembering that Ace is either high only or low only, this is “You are dealt 3 unpaired cards, how often do you have a 3-card straight, a 2-card straight, or no connected ranks at all (1-1-1).”

Case
1-1-1
2-1
3
Total
3 of 13, line
165
110
11
286
3 of 12, line
120
90
10
220
3 of 11, line
84
72
9
165
3 of 10, line
56
56
8
120
3 of 9, line
35
42
7
84
3 of 8, line
20
30
6
56
3 of 7, line
10
20
5
35
3 of 6, line
4
12
4
20


Now, let’s look at the those same results for partitions of three when the line is a closed loop (no end points)

Case
1-1-1
2-1
3
Total
3 of 13, closed loop
157
116
13
286
3 of 12, closed loop
112
97
12
220
3 of 11, closed loop
77
77
11
165
3 of 10, closed loop
50
60
10
120
3 of 9, closed loop
30
45
9
84
3 of 8, closed loop
16
32
8
56
3 of 7, closed loop
7
21
7
35
3 of 6, closed loop
2
12
6
20


There appears to be a lot of symmetry in this closed loop version of partitions of 3. At this point, I have not analyzed closed loop systems very much because I have become intrigued by some aspects of possible applications of the “open line” partition frequencies.

Partitions of 4.
The number 4 has the following five partitions: 1-1-1-1, 2-1-1, 2-2, 3-1, and 4. Just for chuckles, let’s see the frequencies of these partitions for open linear arrays of length 8-13.

Case
1-1-1-1
2-1-1
2-2
3-1
4
Total
4 of 13, line
210
360
45
90
10
715
4 of 12, line
126
252
36
72
9
495
4 of 11, line
70
168
28
56
8
330
4 of 10, line
35
105
21
42
7
210
4 of 9, line
15
60
15
30
6
126
4 of 8, line
5
30
10
20
5
70


I always like to look for patterns in numbers, look for primes and special numbers. But when I first calculated these partition frequencies/combinations they frustrated me. The only prime numbers are trivial. I learned to dig into them deeper, which I’ll discuss later in the next few posts.
Last edited by: gordonm888 on Aug 19, 2019
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
Thanked by
Ajaxx
August 19th, 2019 at 8:33:50 AM permalink
Calculating Partition Frequency

I will explain an efficient way of calculating the frequency of any partition of the number m when chosen from an open linear array of n objects.

Let me define an example based on card games. Example: You are designing a bonus payout for a card game in which a player is dealt 7 cards and in which the Ace counts only as a high or low card and in which you are ignoring flushes. You want to evaluate a bonus payout for the player when his 7-card hand has no pairs and has two straights that are exactly 3-cards long. There are c(13,7) = 1716 possible combinations of 7 ranks, but how often will 7 cards of different ranks be partitioned into a 3-3-1 partition?

In order to implement the methodology I will describe, we must define for any given partition a TOTAL, a LENGTH and the NUMBER OF PERMUTATIONS

For 3-3-1, The total is 3+3+1=7. The length is 3, because this partition has 3 elements or clumps. And the number of permutations is 3, because it can be sequenced as followed: 3-3-1; 3-1-3; and 1-3-3.
Of specific importance to this calculation is the partition 3-3-1 has 3 permutations.

The next step is to examine the partition of the spaces between the 3 substrings that make up 3-3-1. I call this “partitioning the void.” When selecting 7 objects from a total of 13, you can define the 7 objects that were selected equally well by defining the 6 objects that you have not selected. When picking 7 card ranks from 13, we can equally well think of this as defining 6 card ranks that are NOT SELECTED. This is the reason that c(13,7) =c(13,6) and more generally, that

c(n,m) = c(n,n-m).

Now, given 7 selected from 13, and given the 7 objects will be partitioned as 3-3-1, we know that there must be 6 objects that were not selected and the 6 unselected objects must have a partition that has a length in the range of 2-4. Clearly, the unselected objects must have at least two ‘clumps ‘ so as to divide the 7 objects into three clumps. Similarly, if the 6 unselected objects were partitioned into 5 or more clumps (2-1-1-1, or 1-1-1-1-1-1) they would have to divide the 7 selected objects into more than 3 clumps.

So given an open linear string of n objects and selecting m objects with a partition of length l, the unselected objects must total (n-m) and be arrayed as a partition of (n-m) with length in the rangel -1 to l+1.

For our example, which involves 7 ranks selected from 13 and arrayed as a partition of 3-3-1, let’s look at the partitions of 6. We’ll order them by their length:

l=6: 1-1-1-1-1-1
l=5: 2-1-1-1-1
l=4: 3-1-1-1; 2-2-1-1
l=3: 4-1-1; 3-2-1; 2-2-2
l=2: 5-1; 4-2; 3-3
l=1: 6


For our example of 7 ranks selected from 13 and arrayed as a partition of 3-3-1, the 6 unselected ranks must be partitioned as either 3-1-1-1; 2-2-1-1, 4-1-1; 3-2-1; 2-2-2, 5-1; 4-2; 3-3 because these are all the possible partitions of 6 that have a length of 2-4.

Now, I define a parameter that will be useful in some applications.
p(n,l) = the sum of the number of permutations for all partitions of n with length l.

Example p(6,3) is the sum of number of permutations for all partitions of 6 with length =3. Referring to the list above we have:
4-1-1 which has 3 permutations
3-2-1 which has 6 permutations
2-2-2 which has 1 permutation

So, p(6,3) = 3+6+1 =10.

Similarly, p(6,6)=1; p(6,5)=5; p(6,4)=10: p(6,2)=5 and p(6,1)=1.

The number of combinations of 7 ranks picked out of 13 that have a partition of 3-3-1 I is the product:

(Number of permutations of 3-3-1) x ( p(6,2) + 2 x p(6,3) + p(6,4) )

(3) x (5 + 2 x 10 +10) = 105.


So, when selecting 7 ranks out of 13 (and restricting the ace to be either high or low) the 7 ranks will be partitioned as 3-3-1 in 105 of 1716 possible combinations.

It is straightforward to calculate values of p(n,l) for small values of n; I have found that it is useful to have precalculated tables of this parameter when working certain kinds of problems.
Last edited by: gordonm888 on Aug 19, 2019
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
Thanked by
Ajaxx
August 19th, 2019 at 8:45:47 AM permalink
Permutations and Binary Integers
The binary form of integers is an obvious opportunity to investigate partitions in open linear strings. I have just started to consider this, but here are some preliminary examples and observations.

The decimal integer 137 may be written in binary notation as 10001001. Now notice that 10001001 is a string of 8 digits: 3 ones and 5 zeros. The ones are partitioned as 1-1-1 and the 5 zeros are partitioned as 3-2.

The partitions 1-1-1|3-2 do not uniquely connote 197, there are 2 binary numbers with those partitions. We know it is 2 because 1-1-1 has 1 permutation and 3-2 has 2 permutations and 1x2=2.

The set of binary integers with partitions 1-1-1|3-1 is (145, 197).

As another example, the set of binary integers with partitions 2-1-1|2-1 is (75, 77, 83, 89, 101, 105). Here are some other sets, as denoted by combinations of simple partitions.
2-1|1 = (11, 13)
3-1|1 = (23, 29)
4-1|1 = (47, 61)
5-1|1 = (95, 125)
6-1|1 = (191, 253)
2-1|2 = (19, 25)
3-1|3 = (71, 113)
4-1|3 = (143, 241)
2-1-1|1-1 = (43, 45, 53)

Here are some rules for interpreting the partition nomenclature:
1. The first partition is the partition of the 1’s, the second partition refers to the partition of the 0’s.
2. The number of binary integers that have that specific set of partitions for the 1s and 0s will be equal to the product of the permutations of the two partitions.
3. In order to be a valid binary integer, the length of the zeros partition must be equal to or one less than the length of the ones partition.
4. If the length of the partition of zeros is one less than the length of the partition of the 1s, than all the integers in the set will be ODD. If the length of the two partitions are equal, then all the integers in the set will be EVEN.

So given this symbol: 4-3-1-1|2-2-1 it can be immediately deduced that 36 integers will have that configuration of partitions, and they will all be odd numbers in the range 214 to 215-1.

Now let’s look at partitions when writing binary numbers with some of the leading zeroes. To do this it is necessary to define a number “space” or region. Let’s consider all the integers from 0 to (n13-1) and write them all as having 13 digits.
12 = 0000000001100 which is 2|9-2
8,191 = 11111111111111 which is 13|0
7,621 = 1110111000101 which is 3-3-1-1|3-1-1


Notice that for 7,621 the ones partition has a length l=4, while the zeroes partition has a length that is 3, or l-1. Here again, we see that if the ones partition has a length n then the length of the ones partition is constrained to be n-1, n, or n+1.

Let’s make a definition that in the space 0 to (213-1) that a number is:
SMALL if it is 0 to (212-1)
LARGE if it is 212 to (212-1)

Now if the ones partition of an integer in the space 0 to (213-1) is of length l, then it is easily proven that:
- The integer will be SMALL and ODD if the zeros partition is of length ( l - 1 )
- The integer will be LARGE and EVEN if the zeros partition is of length ( l + 1 )
- The integer will be either SMALL and EVEN or LARGE and ODD if the zeros partition is of length l

Combinations and Factor of Two
Let me write down one particular mathematical identity that came to me as I was working with binary numbers.

m=1 to nΣ c(n,m) = 2n – 1


where, again, c(n,m) is the classic formula for combinations when selecting m from n.

Example: Take n=13
c(13,13) =1
c(13,1) = c(13,12) = 13
c(13,2) = c(13,11) =78
c(13,3) = c(13,10) =286
c(13,4) = c(13,9) =715
c(13,5) = c(13,8) =1287
c(13,6) = c(13,7) =1716

and:
1+ 2 x (13 + 78 + 286 + 715 + 1287 + 1716) = 8,191 = 213 - 1

This simple formula potentially links combination math to other areas of number theory such as Mersenne Primes.

The identity may also be written as:

m=0 to nΣc(n,m) = 2n

Where now the summation starts at m=0.

Interesting, huh?
Last edited by: gordonm888 on Aug 19, 2019
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
rsactuary
rsactuary
  • Threads: 29
  • Posts: 2315
Joined: Sep 6, 2014
August 19th, 2019 at 9:11:49 AM permalink
Quote: Wizard

Does this table not answer your question?



No, I'm looking for an actual listing of the partitions, not the number of them.

ie: here's the listing for 7....

1,1,1,1,1,1,1
2,1,1,1,1,1
2,2,1,1,1
3,1,1,1
2,2,2,1
3,2,1,1
4,1,1,1
3,2,2
3,3,1
4,2,1
5,1,1,
4,3
5,2
6,1
7

I'm looking for this list for 10, 11, 12, 13, 14 and 15.

I could manually do it myself, but worried about missing something. I thought that's what your program did, but maybe not?
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 19th, 2019 at 9:20:17 AM permalink
Quote: rsactuary

No, I'm looking for an actual listing of the partitions, not the number of them.



"I see," said the flea (referring to myself). Yes, I think I can get my program to do that. I've got a lot on my plate today, but hopefully I can provide it for any reasonable number soon.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 19th, 2019 at 12:12:35 PM permalink
Quote: rsactuary

No, I'm looking for an actual listing of the partitions, not the number of them.




Partitions for 4
4
3,1
2,2
2,1,1
1,1,1,1





Partitions for 5
5
4,1
3,2
3,1,1
2,2,1
2,1,1,1
1,1,1,1,1





Partitions for 6
6
5,1
4,2
4,1,1
3,3
3,2,1
3,1,1,1
2,2,2
2,2,1,1
2,1,1,1,1
1,1,1,1,1,1





Partitions for 7
7
6,1
5,2
5,1,1
4,3
4,2,1
4,1,1,1
3,3,1
3,2,2
3,2,1,1
3,1,1,1,1
2,2,2,1
2,2,1,1,1
2,1,1,1,1,1
1,1,1,1,1,1,1





Partitions for 8
8
7,1
6,2
6,1,1
5,3
5,2,1
5,1,1,1
4,4
4,3,1
4,2,2
4,2,1,1
4,1,1,1,1
3,3,2
3,3,1,1
3,2,2,1
3,2,1,1,1
3,1,1,1,1,1
2,2,2,2
2,2,2,1,1
2,2,1,1,1,1
2,1,1,1,1,1,1
1,1,1,1,1,1,1,1





Partitions for 9
9
8,1
7,2
7,1,1
6,3
6,2,1
6,1,1,1
5,4
5,3,1
5,2,2
5,2,1,1
5,1,1,1,1
4,4,1
4,3,2
4,3,1,1
4,2,2,1
4,2,1,1,1
4,1,1,1,1,1
3,3,3
3,3,2,1
3,3,1,1,1
3,2,2,2
3,2,2,1,1
3,2,1,1,1,1
3,1,1,1,1,1,1
2,2,2,2,1
2,2,2,1,1,1
2,2,1,1,1,1,1
2,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1





Partitions for 10
10
9,1
8,2
8,1,1
7,3
7,2,1
7,1,1,1
6,4
6,3,1
6,2,2
6,2,1,1
6,1,1,1,1
5,5
5,4,1
5,3,2
5,3,1,1
5,2,2,1
5,2,1,1,1
5,1,1,1,1,1
4,4,2
4,4,1,1
4,3,3
4,3,2,1
4,3,1,1,1
4,2,2,2
4,2,2,1,1
4,2,1,1,1,1
4,1,1,1,1,1,1
3,3,3,1
3,3,2,2
3,3,2,1,1
3,3,1,1,1,1
3,2,2,2,1
3,2,2,1,1,1
3,2,1,1,1,1,1
3,1,1,1,1,1,1,1
2,2,2,2,2
2,2,2,2,1,1
2,2,2,1,1,1,1
2,2,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1





Partitions for 11
11
10,1
9,2
9,1,1
8,3
8,2,1
8,1,1,1
7,4
7,3,1
7,2,2
7,2,1,1
7,1,1,1,1
6,5
6,4,1
6,3,2
6,3,1,1
6,2,2,1
6,2,1,1,1
6,1,1,1,1,1
5,5,1
5,4,2
5,4,1,1
5,3,3
5,3,2,1
5,3,1,1,1
5,2,2,2
5,2,2,1,1
5,2,1,1,1,1
5,1,1,1,1,1,1
4,4,3
4,4,2,1
4,4,1,1,1
4,3,3,1
4,3,2,2
4,3,2,1,1
4,3,1,1,1,1
4,2,2,2,1
4,2,2,1,1,1
4,2,1,1,1,1,1
4,1,1,1,1,1,1,1
3,3,3,2
3,3,3,1,1
3,3,2,2,1
3,3,2,1,1,1
3,3,1,1,1,1,1
3,2,2,2,2
3,2,2,2,1,1
3,2,2,1,1,1,1
3,2,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1
2,2,2,2,2,1
2,2,2,2,1,1,1
2,2,2,1,1,1,1,1
2,2,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1





Partitions for 12
12
11,1
10,2
10,1,1
9,3
9,2,1
9,1,1,1
8,4
8,3,1
8,2,2
8,2,1,1
8,1,1,1,1
7,5
7,4,1
7,3,2
7,3,1,1
7,2,2,1
7,2,1,1,1
7,1,1,1,1,1
6,6
6,5,1
6,4,2
6,4,1,1
6,3,3
6,3,2,1
6,3,1,1,1
6,2,2,2
6,2,2,1,1
6,2,1,1,1,1
6,1,1,1,1,1,1
5,5,2
5,5,1,1
5,4,3
5,4,2,1
5,4,1,1,1
5,3,3,1
5,3,2,2
5,3,2,1,1
5,3,1,1,1,1
5,2,2,2,1
5,2,2,1,1,1
5,2,1,1,1,1,1
5,1,1,1,1,1,1,1
4,4,4
4,4,3,1
4,4,2,2
4,4,2,1,1
4,4,1,1,1,1
4,3,3,2
4,3,3,1,1
4,3,2,2,1
4,3,2,1,1,1
4,3,1,1,1,1,1
4,2,2,2,2
4,2,2,2,1,1
4,2,2,1,1,1,1
4,2,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1
3,3,3,3
3,3,3,2,1
3,3,3,1,1,1
3,3,2,2,2
3,3,2,2,1,1
3,3,2,1,1,1,1
3,3,1,1,1,1,1,1
3,2,2,2,2,1
3,2,2,2,1,1,1
3,2,2,1,1,1,1,1
3,2,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2
2,2,2,2,2,1,1
2,2,2,2,1,1,1,1
2,2,2,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1





Partitions for 13
13
12,1
11,2
11,1,1
10,3
10,2,1
10,1,1,1
9,4
9,3,1
9,2,2
9,2,1,1
9,1,1,1,1
8,5
8,4,1
8,3,2
8,3,1,1
8,2,2,1
8,2,1,1,1
8,1,1,1,1,1
7,6
7,5,1
7,4,2
7,4,1,1
7,3,3
7,3,2,1
7,3,1,1,1
7,2,2,2
7,2,2,1,1
7,2,1,1,1,1
7,1,1,1,1,1,1
6,6,1
6,5,2
6,5,1,1
6,4,3
6,4,2,1
6,4,1,1,1
6,3,3,1
6,3,2,2
6,3,2,1,1
6,3,1,1,1,1
6,2,2,2,1
6,2,2,1,1,1
6,2,1,1,1,1,1
6,1,1,1,1,1,1,1
5,5,3
5,5,2,1
5,5,1,1,1
5,4,4
5,4,3,1
5,4,2,2
5,4,2,1,1
5,4,1,1,1,1
5,3,3,2
5,3,3,1,1
5,3,2,2,1
5,3,2,1,1,1
5,3,1,1,1,1,1
5,2,2,2,2
5,2,2,2,1,1
5,2,2,1,1,1,1
5,2,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1
4,4,4,1
4,4,3,2
4,4,3,1,1
4,4,2,2,1
4,4,2,1,1,1
4,4,1,1,1,1,1
4,3,3,3
4,3,3,2,1
4,3,3,1,1,1
4,3,2,2,2
4,3,2,2,1,1
4,3,2,1,1,1,1
4,3,1,1,1,1,1,1
4,2,2,2,2,1
4,2,2,2,1,1,1
4,2,2,1,1,1,1,1
4,2,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1
3,3,3,3,1
3,3,3,2,2
3,3,3,2,1,1
3,3,3,1,1,1,1
3,3,2,2,2,1
3,3,2,2,1,1,1
3,3,2,1,1,1,1,1
3,3,1,1,1,1,1,1,1
3,2,2,2,2,2
3,2,2,2,2,1,1
3,2,2,2,1,1,1,1
3,2,2,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,1
2,2,2,2,2,1,1,1
2,2,2,2,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1





Partitions for 14
14
13,1
12,2
12,1,1
11,3
11,2,1
11,1,1,1
10,4
10,3,1
10,2,2
10,2,1,1
10,1,1,1,1
9,5
9,4,1
9,3,2
9,3,1,1
9,2,2,1
9,2,1,1,1
9,1,1,1,1,1
8,6
8,5,1
8,4,2
8,4,1,1
8,3,3
8,3,2,1
8,3,1,1,1
8,2,2,2
8,2,2,1,1
8,2,1,1,1,1
8,1,1,1,1,1,1
7,7
7,6,1
7,5,2
7,5,1,1
7,4,3
7,4,2,1
7,4,1,1,1
7,3,3,1
7,3,2,2
7,3,2,1,1
7,3,1,1,1,1
7,2,2,2,1
7,2,2,1,1,1
7,2,1,1,1,1,1
7,1,1,1,1,1,1,1
6,6,2
6,6,1,1
6,5,3
6,5,2,1
6,5,1,1,1
6,4,4
6,4,3,1
6,4,2,2
6,4,2,1,1
6,4,1,1,1,1
6,3,3,2
6,3,3,1,1
6,3,2,2,1
6,3,2,1,1,1
6,3,1,1,1,1,1
6,2,2,2,2
6,2,2,2,1,1
6,2,2,1,1,1,1
6,2,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1
5,5,4
5,5,3,1
5,5,2,2
5,5,2,1,1
5,5,1,1,1,1
5,4,4,1
5,4,3,2
5,4,3,1,1
5,4,2,2,1
5,4,2,1,1,1
5,4,1,1,1,1,1
5,3,3,3
5,3,3,2,1
5,3,3,1,1,1
5,3,2,2,2
5,3,2,2,1,1
5,3,2,1,1,1,1
5,3,1,1,1,1,1,1
5,2,2,2,2,1
5,2,2,2,1,1,1
5,2,2,1,1,1,1,1
5,2,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1
4,4,4,2
4,4,4,1,1
4,4,3,3
4,4,3,2,1
4,4,3,1,1,1
4,4,2,2,2
4,4,2,2,1,1
4,4,2,1,1,1,1
4,4,1,1,1,1,1,1
4,3,3,3,1
4,3,3,2,2
4,3,3,2,1,1
4,3,3,1,1,1,1
4,3,2,2,2,1
4,3,2,2,1,1,1
4,3,2,1,1,1,1,1
4,3,1,1,1,1,1,1,1
4,2,2,2,2,2
4,2,2,2,2,1,1
4,2,2,2,1,1,1,1
4,2,2,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1
3,3,3,3,2
3,3,3,3,1,1
3,3,3,2,2,1
3,3,3,2,1,1,1
3,3,3,1,1,1,1,1
3,3,2,2,2,2
3,3,2,2,2,1,1
3,3,2,2,1,1,1,1
3,3,2,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1
3,2,2,2,2,2,1
3,2,2,2,2,1,1,1
3,2,2,2,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2
2,2,2,2,2,2,1,1
2,2,2,2,2,1,1,1,1
2,2,2,2,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1





Partitions for 15
15
14,1
13,2
13,1,1
12,3
12,2,1
12,1,1,1
11,4
11,3,1
11,2,2
11,2,1,1
11,1,1,1,1
10,5
10,4,1
10,3,2
10,3,1,1
10,2,2,1
10,2,1,1,1
10,1,1,1,1,1
9,6
9,5,1
9,4,2
9,4,1,1
9,3,3
9,3,2,1
9,3,1,1,1
9,2,2,2
9,2,2,1,1
9,2,1,1,1,1
9,1,1,1,1,1,1
8,7
8,6,1
8,5,2
8,5,1,1
8,4,3
8,4,2,1
8,4,1,1,1
8,3,3,1
8,3,2,2
8,3,2,1,1
8,3,1,1,1,1
8,2,2,2,1
8,2,2,1,1,1
8,2,1,1,1,1,1
8,1,1,1,1,1,1,1
7,7,1
7,6,2
7,6,1,1
7,5,3
7,5,2,1
7,5,1,1,1
7,4,4
7,4,3,1
7,4,2,2
7,4,2,1,1
7,4,1,1,1,1
7,3,3,2
7,3,3,1,1
7,3,2,2,1
7,3,2,1,1,1
7,3,1,1,1,1,1
7,2,2,2,2
7,2,2,2,1,1
7,2,2,1,1,1,1
7,2,1,1,1,1,1,1
7,1,1,1,1,1,1,1,1
6,6,3
6,6,2,1
6,6,1,1,1
6,5,4
6,5,3,1
6,5,2,2
6,5,2,1,1
6,5,1,1,1,1
6,4,4,1
6,4,3,2
6,4,3,1,1
6,4,2,2,1
6,4,2,1,1,1
6,4,1,1,1,1,1
6,3,3,3
6,3,3,2,1
6,3,3,1,1,1
6,3,2,2,2
6,3,2,2,1,1
6,3,2,1,1,1,1
6,3,1,1,1,1,1,1
6,2,2,2,2,1
6,2,2,2,1,1,1
6,2,2,1,1,1,1,1
6,2,1,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1,1
5,5,5
5,5,4,1
5,5,3,2
5,5,3,1,1
5,5,2,2,1
5,5,2,1,1,1
5,5,1,1,1,1,1
5,4,4,2
5,4,4,1,1
5,4,3,3
5,4,3,2,1
5,4,3,1,1,1
5,4,2,2,2
5,4,2,2,1,1
5,4,2,1,1,1,1
5,4,1,1,1,1,1,1
5,3,3,3,1
5,3,3,2,2
5,3,3,2,1,1
5,3,3,1,1,1,1
5,3,2,2,2,1
5,3,2,2,1,1,1
5,3,2,1,1,1,1,1
5,3,1,1,1,1,1,1,1
5,2,2,2,2,2
5,2,2,2,2,1,1
5,2,2,2,1,1,1,1
5,2,2,1,1,1,1,1,1
5,2,1,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1,1
4,4,4,3
4,4,4,2,1
4,4,4,1,1,1
4,4,3,3,1
4,4,3,2,2
4,4,3,2,1,1
4,4,3,1,1,1,1
4,4,2,2,2,1
4,4,2,2,1,1,1
4,4,2,1,1,1,1,1
4,4,1,1,1,1,1,1,1
4,3,3,3,2
4,3,3,3,1,1
4,3,3,2,2,1
4,3,3,2,1,1,1
4,3,3,1,1,1,1,1
4,3,2,2,2,2
4,3,2,2,2,1,1
4,3,2,2,1,1,1,1
4,3,2,1,1,1,1,1,1
4,3,1,1,1,1,1,1,1,1
4,2,2,2,2,2,1
4,2,2,2,2,1,1,1
4,2,2,2,1,1,1,1,1
4,2,2,1,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1,1
3,3,3,3,3
3,3,3,3,2,1
3,3,3,3,1,1,1
3,3,3,2,2,2
3,3,3,2,2,1,1
3,3,3,2,1,1,1,1
3,3,3,1,1,1,1,1,1
3,3,2,2,2,2,1
3,3,2,2,2,1,1,1
3,3,2,2,1,1,1,1,1
3,3,2,1,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1,1
3,2,2,2,2,2,2
3,2,2,2,2,2,1,1
3,2,2,2,2,1,1,1,1
3,2,2,2,1,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2,1
2,2,2,2,2,2,1,1,1
2,2,2,2,2,1,1,1,1,1
2,2,2,2,1,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
rsactuary
rsactuary
  • Threads: 29
  • Posts: 2315
Joined: Sep 6, 2014
August 19th, 2019 at 12:37:37 PM permalink
Thank you!!! yikes it gets big fast!
unJon
unJon
  • Threads: 16
  • Posts: 4763
Joined: Jul 1, 2018
August 19th, 2019 at 6:00:13 PM permalink
Quote: Wizard


Partitions for 4
4
3,1
2,2
2,1,1
1,1,1,1





Partitions for 5
5
4,1
3,2
3,1,1
2,2,1
2,1,1,1
1,1,1,1,1





Partitions for 6
6
5,1
4,2
4,1,1
3,3
3,2,1
3,1,1,1
2,2,2
2,2,1,1
2,1,1,1,1
1,1,1,1,1,1





Partitions for 7
7
6,1
5,2
5,1,1
4,3
4,2,1
4,1,1,1
3,3,1
3,2,2
3,2,1,1
3,1,1,1,1
2,2,2,1
2,2,1,1,1
2,1,1,1,1,1
1,1,1,1,1,1,1





Partitions for 8
8
7,1
6,2
6,1,1
5,3
5,2,1
5,1,1,1
4,4
4,3,1
4,2,2
4,2,1,1
4,1,1,1,1
3,3,2
3,3,1,1
3,2,2,1
3,2,1,1,1
3,1,1,1,1,1
2,2,2,2
2,2,2,1,1
2,2,1,1,1,1
2,1,1,1,1,1,1
1,1,1,1,1,1,1,1





Partitions for 9
9
8,1
7,2
7,1,1
6,3
6,2,1
6,1,1,1
5,4
5,3,1
5,2,2
5,2,1,1
5,1,1,1,1
4,4,1
4,3,2
4,3,1,1
4,2,2,1
4,2,1,1,1
4,1,1,1,1,1
3,3,3
3,3,2,1
3,3,1,1,1
3,2,2,2
3,2,2,1,1
3,2,1,1,1,1
3,1,1,1,1,1,1
2,2,2,2,1
2,2,2,1,1,1
2,2,1,1,1,1,1
2,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1





Partitions for 10
10
9,1
8,2
8,1,1
7,3
7,2,1
7,1,1,1
6,4
6,3,1
6,2,2
6,2,1,1
6,1,1,1,1
5,5
5,4,1
5,3,2
5,3,1,1
5,2,2,1
5,2,1,1,1
5,1,1,1,1,1
4,4,2
4,4,1,1
4,3,3
4,3,2,1
4,3,1,1,1
4,2,2,2
4,2,2,1,1
4,2,1,1,1,1
4,1,1,1,1,1,1
3,3,3,1
3,3,2,2
3,3,2,1,1
3,3,1,1,1,1
3,2,2,2,1
3,2,2,1,1,1
3,2,1,1,1,1,1
3,1,1,1,1,1,1,1
2,2,2,2,2
2,2,2,2,1,1
2,2,2,1,1,1,1
2,2,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1





Partitions for 11
11
10,1
9,2
9,1,1
8,3
8,2,1
8,1,1,1
7,4
7,3,1
7,2,2
7,2,1,1
7,1,1,1,1
6,5
6,4,1
6,3,2
6,3,1,1
6,2,2,1
6,2,1,1,1
6,1,1,1,1,1
5,5,1
5,4,2
5,4,1,1
5,3,3
5,3,2,1
5,3,1,1,1
5,2,2,2
5,2,2,1,1
5,2,1,1,1,1
5,1,1,1,1,1,1
4,4,3
4,4,2,1
4,4,1,1,1
4,3,3,1
4,3,2,2
4,3,2,1,1
4,3,1,1,1,1
4,2,2,2,1
4,2,2,1,1,1
4,2,1,1,1,1,1
4,1,1,1,1,1,1,1
3,3,3,2
3,3,3,1,1
3,3,2,2,1
3,3,2,1,1,1
3,3,1,1,1,1,1
3,2,2,2,2
3,2,2,2,1,1
3,2,2,1,1,1,1
3,2,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1
2,2,2,2,2,1
2,2,2,2,1,1,1
2,2,2,1,1,1,1,1
2,2,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1





Partitions for 12
12
11,1
10,2
10,1,1
9,3
9,2,1
9,1,1,1
8,4
8,3,1
8,2,2
8,2,1,1
8,1,1,1,1
7,5
7,4,1
7,3,2
7,3,1,1
7,2,2,1
7,2,1,1,1
7,1,1,1,1,1
6,6
6,5,1
6,4,2
6,4,1,1
6,3,3
6,3,2,1
6,3,1,1,1
6,2,2,2
6,2,2,1,1
6,2,1,1,1,1
6,1,1,1,1,1,1
5,5,2
5,5,1,1
5,4,3
5,4,2,1
5,4,1,1,1
5,3,3,1
5,3,2,2
5,3,2,1,1
5,3,1,1,1,1
5,2,2,2,1
5,2,2,1,1,1
5,2,1,1,1,1,1
5,1,1,1,1,1,1,1
4,4,4
4,4,3,1
4,4,2,2
4,4,2,1,1
4,4,1,1,1,1
4,3,3,2
4,3,3,1,1
4,3,2,2,1
4,3,2,1,1,1
4,3,1,1,1,1,1
4,2,2,2,2
4,2,2,2,1,1
4,2,2,1,1,1,1
4,2,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1
3,3,3,3
3,3,3,2,1
3,3,3,1,1,1
3,3,2,2,2
3,3,2,2,1,1
3,3,2,1,1,1,1
3,3,1,1,1,1,1,1
3,2,2,2,2,1
3,2,2,2,1,1,1
3,2,2,1,1,1,1,1
3,2,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2
2,2,2,2,2,1,1
2,2,2,2,1,1,1,1
2,2,2,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1





Partitions for 13
13
12,1
11,2
11,1,1
10,3
10,2,1
10,1,1,1
9,4
9,3,1
9,2,2
9,2,1,1
9,1,1,1,1
8,5
8,4,1
8,3,2
8,3,1,1
8,2,2,1
8,2,1,1,1
8,1,1,1,1,1
7,6
7,5,1
7,4,2
7,4,1,1
7,3,3
7,3,2,1
7,3,1,1,1
7,2,2,2
7,2,2,1,1
7,2,1,1,1,1
7,1,1,1,1,1,1
6,6,1
6,5,2
6,5,1,1
6,4,3
6,4,2,1
6,4,1,1,1
6,3,3,1
6,3,2,2
6,3,2,1,1
6,3,1,1,1,1
6,2,2,2,1
6,2,2,1,1,1
6,2,1,1,1,1,1
6,1,1,1,1,1,1,1
5,5,3
5,5,2,1
5,5,1,1,1
5,4,4
5,4,3,1
5,4,2,2
5,4,2,1,1
5,4,1,1,1,1
5,3,3,2
5,3,3,1,1
5,3,2,2,1
5,3,2,1,1,1
5,3,1,1,1,1,1
5,2,2,2,2
5,2,2,2,1,1
5,2,2,1,1,1,1
5,2,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1
4,4,4,1
4,4,3,2
4,4,3,1,1
4,4,2,2,1
4,4,2,1,1,1
4,4,1,1,1,1,1
4,3,3,3
4,3,3,2,1
4,3,3,1,1,1
4,3,2,2,2
4,3,2,2,1,1
4,3,2,1,1,1,1
4,3,1,1,1,1,1,1
4,2,2,2,2,1
4,2,2,2,1,1,1
4,2,2,1,1,1,1,1
4,2,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1
3,3,3,3,1
3,3,3,2,2
3,3,3,2,1,1
3,3,3,1,1,1,1
3,3,2,2,2,1
3,3,2,2,1,1,1
3,3,2,1,1,1,1,1
3,3,1,1,1,1,1,1,1
3,2,2,2,2,2
3,2,2,2,2,1,1
3,2,2,2,1,1,1,1
3,2,2,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,1
2,2,2,2,2,1,1,1
2,2,2,2,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1





Partitions for 14
14
13,1
12,2
12,1,1
11,3
11,2,1
11,1,1,1
10,4
10,3,1
10,2,2
10,2,1,1
10,1,1,1,1
9,5
9,4,1
9,3,2
9,3,1,1
9,2,2,1
9,2,1,1,1
9,1,1,1,1,1
8,6
8,5,1
8,4,2
8,4,1,1
8,3,3
8,3,2,1
8,3,1,1,1
8,2,2,2
8,2,2,1,1
8,2,1,1,1,1
8,1,1,1,1,1,1
7,7
7,6,1
7,5,2
7,5,1,1
7,4,3
7,4,2,1
7,4,1,1,1
7,3,3,1
7,3,2,2
7,3,2,1,1
7,3,1,1,1,1
7,2,2,2,1
7,2,2,1,1,1
7,2,1,1,1,1,1
7,1,1,1,1,1,1,1
6,6,2
6,6,1,1
6,5,3
6,5,2,1
6,5,1,1,1
6,4,4
6,4,3,1
6,4,2,2
6,4,2,1,1
6,4,1,1,1,1
6,3,3,2
6,3,3,1,1
6,3,2,2,1
6,3,2,1,1,1
6,3,1,1,1,1,1
6,2,2,2,2
6,2,2,2,1,1
6,2,2,1,1,1,1
6,2,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1
5,5,4
5,5,3,1
5,5,2,2
5,5,2,1,1
5,5,1,1,1,1
5,4,4,1
5,4,3,2
5,4,3,1,1
5,4,2,2,1
5,4,2,1,1,1
5,4,1,1,1,1,1
5,3,3,3
5,3,3,2,1
5,3,3,1,1,1
5,3,2,2,2
5,3,2,2,1,1
5,3,2,1,1,1,1
5,3,1,1,1,1,1,1
5,2,2,2,2,1
5,2,2,2,1,1,1
5,2,2,1,1,1,1,1
5,2,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1
4,4,4,2
4,4,4,1,1
4,4,3,3
4,4,3,2,1
4,4,3,1,1,1
4,4,2,2,2
4,4,2,2,1,1
4,4,2,1,1,1,1
4,4,1,1,1,1,1,1
4,3,3,3,1
4,3,3,2,2
4,3,3,2,1,1
4,3,3,1,1,1,1
4,3,2,2,2,1
4,3,2,2,1,1,1
4,3,2,1,1,1,1,1
4,3,1,1,1,1,1,1,1
4,2,2,2,2,2
4,2,2,2,2,1,1
4,2,2,2,1,1,1,1
4,2,2,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1
3,3,3,3,2
3,3,3,3,1,1
3,3,3,2,2,1
3,3,3,2,1,1,1
3,3,3,1,1,1,1,1
3,3,2,2,2,2
3,3,2,2,2,1,1
3,3,2,2,1,1,1,1
3,3,2,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1
3,2,2,2,2,2,1
3,2,2,2,2,1,1,1
3,2,2,2,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2
2,2,2,2,2,2,1,1
2,2,2,2,2,1,1,1,1
2,2,2,2,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1





Partitions for 15
15
14,1
13,2
13,1,1
12,3
12,2,1
12,1,1,1
11,4
11,3,1
11,2,2
11,2,1,1
11,1,1,1,1
10,5
10,4,1
10,3,2
10,3,1,1
10,2,2,1
10,2,1,1,1
10,1,1,1,1,1
9,6
9,5,1
9,4,2
9,4,1,1
9,3,3
9,3,2,1
9,3,1,1,1
9,2,2,2
9,2,2,1,1
9,2,1,1,1,1
9,1,1,1,1,1,1
8,7
8,6,1
8,5,2
8,5,1,1
8,4,3
8,4,2,1
8,4,1,1,1
8,3,3,1
8,3,2,2
8,3,2,1,1
8,3,1,1,1,1
8,2,2,2,1
8,2,2,1,1,1
8,2,1,1,1,1,1
8,1,1,1,1,1,1,1
7,7,1
7,6,2
7,6,1,1
7,5,3
7,5,2,1
7,5,1,1,1
7,4,4
7,4,3,1
7,4,2,2
7,4,2,1,1
7,4,1,1,1,1
7,3,3,2
7,3,3,1,1
7,3,2,2,1
7,3,2,1,1,1
7,3,1,1,1,1,1
7,2,2,2,2
7,2,2,2,1,1
7,2,2,1,1,1,1
7,2,1,1,1,1,1,1
7,1,1,1,1,1,1,1,1
6,6,3
6,6,2,1
6,6,1,1,1
6,5,4
6,5,3,1
6,5,2,2
6,5,2,1,1
6,5,1,1,1,1
6,4,4,1
6,4,3,2
6,4,3,1,1
6,4,2,2,1
6,4,2,1,1,1
6,4,1,1,1,1,1
6,3,3,3
6,3,3,2,1
6,3,3,1,1,1
6,3,2,2,2
6,3,2,2,1,1
6,3,2,1,1,1,1
6,3,1,1,1,1,1,1
6,2,2,2,2,1
6,2,2,2,1,1,1
6,2,2,1,1,1,1,1
6,2,1,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1,1
5,5,5
5,5,4,1
5,5,3,2
5,5,3,1,1
5,5,2,2,1
5,5,2,1,1,1
5,5,1,1,1,1,1
5,4,4,2
5,4,4,1,1
5,4,3,3
5,4,3,2,1
5,4,3,1,1,1
5,4,2,2,2
5,4,2,2,1,1
5,4,2,1,1,1,1
5,4,1,1,1,1,1,1
5,3,3,3,1
5,3,3,2,2
5,3,3,2,1,1
5,3,3,1,1,1,1
5,3,2,2,2,1
5,3,2,2,1,1,1
5,3,2,1,1,1,1,1
5,3,1,1,1,1,1,1,1
5,2,2,2,2,2
5,2,2,2,2,1,1
5,2,2,2,1,1,1,1
5,2,2,1,1,1,1,1,1
5,2,1,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1,1
4,4,4,3
4,4,4,2,1
4,4,4,1,1,1
4,4,3,3,1
4,4,3,2,2
4,4,3,2,1,1
4,4,3,1,1,1,1
4,4,2,2,2,1
4,4,2,2,1,1,1
4,4,2,1,1,1,1,1
4,4,1,1,1,1,1,1,1
4,3,3,3,2
4,3,3,3,1,1
4,3,3,2,2,1
4,3,3,2,1,1,1
4,3,3,1,1,1,1,1
4,3,2,2,2,2
4,3,2,2,2,1,1
4,3,2,2,1,1,1,1
4,3,2,1,1,1,1,1,1
4,3,1,1,1,1,1,1,1,1
4,2,2,2,2,2,1
4,2,2,2,2,1,1,1
4,2,2,2,1,1,1,1,1
4,2,2,1,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1,1
3,3,3,3,3
3,3,3,3,2,1
3,3,3,3,1,1,1
3,3,3,2,2,2
3,3,3,2,2,1,1
3,3,3,2,1,1,1,1
3,3,3,1,1,1,1,1,1
3,3,2,2,2,2,1
3,3,2,2,2,1,1,1
3,3,2,2,1,1,1,1,1
3,3,2,1,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1,1
3,2,2,2,2,2,2
3,2,2,2,2,2,1,1
3,2,2,2,2,1,1,1,1
3,2,2,2,1,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2,1
2,2,2,2,2,2,1,1,1
2,2,2,2,2,1,1,1,1,1
2,2,2,2,1,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1



Seems like there’s should be an elegant recursive formula out there to delineate partitions.
The race is not always to the swift, nor the battle to the strong; but that is the way to bet.
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 19th, 2019 at 8:10:30 PM permalink
Quote: unJon

Seems like there’s should be an elegant recursive formula out there to delineate partitions.



That hits the nail on the head. This is the kind of thing that is probably best discussed over a few beers than a calculator, but, briefly, I feel nothing in math is a coincidence or random. There are patterns in everything, but sometimes we can't find an exact expression for them...yet. Everything seems to boil down to some function of pi, e, or prime numbers. Some, maybe me, would go so far as to claim it is evidence of a higher power.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
weezrDASvegas
weezrDASvegas
  • Threads: 2
  • Posts: 69
Joined: Feb 2, 2018
August 20th, 2019 at 1:59:10 AM permalink
Quote: Wizard

That hits the nail on the head. This is the kind of thing that is probably best discussed over a few beers than a calculator, but, briefly, I feel nothing in math is a coincidence or random. There are patterns in everything, but sometimes we can't find an exact expression for them...yet. Everything seems to boil down to some function of pi, e, or prime numbers. Some, maybe me, would go so far as to claim it is evidence of a higher power.



"God dont play dice with the universe. God dont care about our math." - Einstein, Wizard of Universe
kubikulann
kubikulann
  • Threads: 27
  • Posts: 905
Joined: Jun 28, 2011
August 20th, 2019 at 3:54:43 AM permalink
Quote: Wizard

. Some, maybe me, would go so far as to claim it is evidence of a higher power.

Evidence? Just a hint, maybe.
Anyway, hint or evidence, it would first require to define ‘higher’ and ‘power’. Otherwise, every conjecture would be a hint of a higher power, Too. Or Ramanujan’s 163.
Just saying ‘something inexplicable’ would be tautological... Ginving a specific form to that inexplicable would be a rash move.
Reperiet qui quaesiverit
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 20th, 2019 at 2:05:07 PM permalink
Quote: kubikulann

Evidence? Just a hint, maybe.



One could write a book in answer to the question and barely scratch the surface.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 20th, 2019 at 2:06:46 PM permalink
I'm sure it would be another dead end, but I'm thinking of summing how often each number appears in every partition of a given number. For example, how many times does a 5 appear in partitions of 15?



Partitions for 15
15
14,1
13,2
13,1,1
12,3
12,2,1
12,1,1,1
11,4
11,3,1
11,2,2
11,2,1,1
11,1,1,1,1
10,5
10,4,1
10,3,2
10,3,1,1
10,2,2,1
10,2,1,1,1
10,1,1,1,1,1
9,6
9,5,1
9,4,2
9,4,1,1
9,3,3
9,3,2,1
9,3,1,1,1
9,2,2,2
9,2,2,1,1
9,2,1,1,1,1
9,1,1,1,1,1,1
8,7
8,6,1
8,5,2
8,5,1,1
8,4,3
8,4,2,1
8,4,1,1,1
8,3,3,1
8,3,2,2
8,3,2,1,1
8,3,1,1,1,1
8,2,2,2,1
8,2,2,1,1,1
8,2,1,1,1,1,1
8,1,1,1,1,1,1,1
7,7,1
7,6,2
7,6,1,1
7,5,3
7,5,2,1
7,5,1,1,1
7,4,4
7,4,3,1
7,4,2,2
7,4,2,1,1
7,4,1,1,1,1
7,3,3,2
7,3,3,1,1
7,3,2,2,1
7,3,2,1,1,1
7,3,1,1,1,1,1
7,2,2,2,2
7,2,2,2,1,1
7,2,2,1,1,1,1
7,2,1,1,1,1,1,1
7,1,1,1,1,1,1,1,1
6,6,3
6,6,2,1
6,6,1,1,1
6,5,4
6,5,3,1
6,5,2,2
6,5,2,1,1
6,5,1,1,1,1
6,4,4,1
6,4,3,2
6,4,3,1,1
6,4,2,2,1
6,4,2,1,1,1
6,4,1,1,1,1,1
6,3,3,3
6,3,3,2,1
6,3,3,1,1,1
6,3,2,2,2
6,3,2,2,1,1
6,3,2,1,1,1,1
6,3,1,1,1,1,1,1
6,2,2,2,2,1
6,2,2,2,1,1,1
6,2,2,1,1,1,1,1
6,2,1,1,1,1,1,1,1
6,1,1,1,1,1,1,1,1,1
5,5,5
5,5,4,1
5,5,3,2
5,5,3,1,1
5,5,2,2,1
5,5,2,1,1,1
5,5,1,1,1,1,1
5,4,4,2
5,4,4,1,1
5,4,3,3
5,4,3,2,1
5,4,3,1,1,1
5,4,2,2,2
5,4,2,2,1,1
5,4,2,1,1,1,1
5,4,1,1,1,1,1,1
5,3,3,3,1
5,3,3,2,2
5,3,3,2,1,1
5,3,3,1,1,1,1
5,3,2,2,2,1
5,3,2,2,1,1,1
5,3,2,1,1,1,1,1
5,3,1,1,1,1,1,1,1
5,2,2,2,2,2
5,2,2,2,2,1,1
5,2,2,2,1,1,1,1
5,2,2,1,1,1,1,1,1
5,2,1,1,1,1,1,1,1,1
5,1,1,1,1,1,1,1,1,1,1
4,4,4,3
4,4,4,2,1
4,4,4,1,1,1
4,4,3,3,1
4,4,3,2,2
4,4,3,2,1,1
4,4,3,1,1,1,1
4,4,2,2,2,1
4,4,2,2,1,1,1
4,4,2,1,1,1,1,1
4,4,1,1,1,1,1,1,1
4,3,3,3,2
4,3,3,3,1,1
4,3,3,2,2,1
4,3,3,2,1,1,1
4,3,3,1,1,1,1,1
4,3,2,2,2,2
4,3,2,2,2,1,1
4,3,2,2,1,1,1,1
4,3,2,1,1,1,1,1,1
4,3,1,1,1,1,1,1,1,1
4,2,2,2,2,2,1
4,2,2,2,2,1,1,1
4,2,2,2,1,1,1,1,1
4,2,2,1,1,1,1,1,1,1
4,2,1,1,1,1,1,1,1,1,1
4,1,1,1,1,1,1,1,1,1,1,1
3,3,3,3,3
3,3,3,3,2,1
3,3,3,3,1,1,1
3,3,3,2,2,2
3,3,3,2,2,1,1
3,3,3,2,1,1,1,1
3,3,3,1,1,1,1,1,1
3,3,2,2,2,2,1
3,3,2,2,2,1,1,1
3,3,2,2,1,1,1,1,1
3,3,2,1,1,1,1,1,1,1
3,3,1,1,1,1,1,1,1,1,1
3,2,2,2,2,2,2
3,2,2,2,2,2,1,1
3,2,2,2,2,1,1,1,1
3,2,2,2,1,1,1,1,1,1
3,2,2,1,1,1,1,1,1,1,1
3,2,1,1,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,1,1,1,1
2,2,2,2,2,2,2,1
2,2,2,2,2,2,1,1,1
2,2,2,2,2,1,1,1,1,1
2,2,2,2,1,1,1,1,1,1,1
2,2,2,1,1,1,1,1,1,1,1,1
2,2,1,1,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
unJon
unJon
  • Threads: 16
  • Posts: 4763
Joined: Jul 1, 2018
August 20th, 2019 at 2:09:10 PM permalink
Quote: Wizard

That hits the nail on the head. This is the kind of thing that is probably best discussed over a few beers than a calculator, but, briefly, I feel nothing in math is a coincidence or random. There are patterns in everything, but sometimes we can't find an exact expression for them...yet. Everything seems to boil down to some function of pi, e, or prime numbers. Some, maybe me, would go so far as to claim it is evidence of a higher power.

Don’t forget Pascal’s triangle and sine waves in the list of concepts that pop up in interesting places.
The race is not always to the swift, nor the battle to the strong; but that is the way to bet.
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
August 20th, 2019 at 2:11:58 PM permalink
Quote: Wizard

If there's a term for it, I don't know what it is. The way my math works is I keep track of the maximum height in any given partition. For example, the number of partitions in 100 equals:

P(100) = P(1) + P(2) + ... + P(50) (these are for the cases where the height of the longest stack is 50 to 100) + P(51,49) + P(52,48) + ... P (100,1),
where P(x,y) = Number of partitions where x is the total items and y is the maximum height of a stack.

For example if the height of the largest stack is 30, then there are 70 left, but you can't have a stack higher than 30.

Just one way of getting the answer by brute force.



Yes, I do something very similar, except I use the length of the partition. This is the table I calculate for the the first 10 numbers. In this table the number being partitioned is in the first column, and the row across the top is the length of the partitions. This table gives the number of partitions of a given length for each number - and, in the last column, the total number of partitions. However if you want to create the number of partitions of 10 of various lengths, it is necessary to first calculate values for the first 9 rows. And if you wanted to create a row for the partitions of 200, you would first need to calculate the rows for 1-199.

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
1
1
3
4
1
2
1
1
5
5
1
2
2
1
1
7
6
1
3
3
2
1
1
11
7
1
3
4
3
2
1
1
15
8
1
4
5
5
3
2
1
1
22
9
1
4
7
6
5
3
2
1
1
30
10
1
5
8
9
7
5
3
2
1
1
42


I think one approach is to seek analytical formulas for all the entries in any given row in this table and then sum to get the total number of partitions.

I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
2
1
4
4
1
3
3
1
8
5
1
4
6
4
1
16
6
1
5
10
10
5
1
32
7
1
6
15
20
15
6
1
64
8
1
7
21
35
35
21
7
1
128
9
1
8
28
56
70
56
28
8
1
256
10
1
9
36
84
126
126
84
36
9
1
512



Notice that this table appears to have distinct patterns and it may be possible to find analytical formulas to calculate these numbers.. The question in my mind is: if we can find algebraic formulas to calculate this 'permutations' table, might that be an intermediate step to calculate the "number of partitions" table that I showed first? or, more directly, the total number of partitions for any given number?
Last edited by: gordonm888 on Aug 20, 2019
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
unJon
unJon
  • Threads: 16
  • Posts: 4763
Joined: Jul 1, 2018
August 20th, 2019 at 2:59:14 PM permalink
Quote: gordonm888

Yes, I do something very similar, except I use the length of the partition. This is the table I calculate for the the first 10 numbers. In this table the number being partitioned is in the first column, and the row across the top is the length of the partitions. This table gives the number of partitions of a given length for each number - and, in the last column, the total number of partitions. However if you want to create the number of partitions of 10 of various lengths, it is necessary to first calculate values for the first 9 rows. And if you wanted to create a row for the partitions of 200, you would first need to calculate the rows for 1-199.

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
1
1
3
4
1
2
1
1
5
5
1
2
2
1
1
7
6
1
3
3
2
1
1
11
7
1
3
4
3
2
1
1
15
8
1
4
5
5
3
2
1
1
22
9
1
4
7
6
5
3
2
1
1
30
10
1
5
8
9
7
5
3
2
1
1
42


I think one approach is to seek analytical formulas for all the entries in any given row in this table and then sum to get the total number of partitions.

I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
2
1
4
4
1
3
3
1
8
5
1
4
6
4
1
16
6
1
5
10
10
5
1
32
7
1
6
15
20
15
6
1
64
8
1
7
21
35
35
21
7
1
128
9
1
8
28
56
70
56
28
8
1
256
10
1
9
36
84
126
126
84
36
9
1
512



Notice that this table appears to have distinct patterns and it may be possible to find analytical formulas to calculate these numbers.. The question in my mind is: if we can find algebraic formulas to calculate this 'permutations' table, might that be an intermediate step to calculate the "number of partitions" table that I showed first? or, more directly, the total number of partitions for any given number?



It looks to me that every number in the last table can be generated as the sum of the number directly above and the number just above and to the left.
The race is not always to the swift, nor the battle to the strong; but that is the way to bet.
ThatDonGuy
ThatDonGuy
  • Threads: 122
  • Posts: 6677
Joined: Jun 22, 2011
August 20th, 2019 at 4:24:49 PM permalink
For those of you interested in some "professional" analysis, Donald Knuth of Stanford goes into partition generation in volume 4A of his Art of Computer Programming series of books. Volumes 1-3 have been around for decades, and are generally considered to be the Computer Scientist's Bible - at least, in my opinion (and that's saying something when a Berkeley graduate praises somebody at Stanford).
discflicker
discflicker
  • Threads: 31
  • Posts: 459
Joined: Jan 1, 2011
August 20th, 2019 at 7:59:31 PM permalink
Can this explain why it is that electron orbitals fill up in a strange order? Could it be that these orbitals follow distinct groupings that numerically break down into partitions? I think so! It functions as if there are a huge number of combinations, but since all electrons are identical, we only need to consider the numbers of PERMUTATIONS... that 's what I suspect... the counts of these various permutations define the atomic orbitals. Similar to the way a dish of sand will form distinct geometric shapes at various frequencies, the placements of the orbitals, as well as their discrete energy elevations, fall into distinct numeric groupings. Here is an example of applying sets of distinct numeric groupings into the physics of electron orbitals...

https://brianwhitworth.com/quantum-realism-4-6-3-the-evolution-of-electron-shells/

If you look at these tables, they definitely resemble many of the data relation discussed on this thread.

Marty, 20-Aug-2019
The difference between zero and the smallest possible number? It doesn't matter; once you cross that edge, it might as well be the difference between zero and 1. The difference between infinity and reality? They are mutually exclusive.
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
August 20th, 2019 at 8:16:16 PM permalink
Quote: unJon

Quote: gordonm888

Yes, I do something very similar, except I use the length of the partition. This is the table I calculate for the the first 10 numbers. In this table the number being partitioned is in the first column, and the row across the top is the length of the partitions. This table gives the number of partitions of a given length for each number - and, in the last column, the total number of partitions. However if you want to create the number of partitions of 10 of various lengths, it is necessary to first calculate values for the first 9 rows. And if you wanted to create a row for the partitions of 200, you would first need to calculate the rows for 1-199.

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
1
1
3
4
1
2
1
1
5
5
1
2
2
1
1
7
6
1
3
3
2
1
1
11
7
1
3
4
3
2
1
1
15
8
1
4
5
5
3
2
1
1
22
9
1
4
7
6
5
3
2
1
1
30
10
1
5
8
9
7
5
3
2
1
1
42


I think one approach is to seek analytical formulas for all the entries in any given row in this table and then sum to get the total number of partitions.

I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
2
1
4
4
1
3
3
1
8
5
1
4
6
4
1
16
6
1
5
10
10
5
1
32
7
1
6
15
20
15
6
1
64
8
1
7
21
35
35
21
7
1
128
9
1
8
28
56
70
56
28
8
1
256
10
1
9
36
84
126
126
84
36
9
1
512



Notice that this table appears to have distinct patterns and it may be possible to find analytical formulas to calculate these numbers.. The question in my mind is: if we can find algebraic formulas to calculate this 'permutations' table, might that be an intermediate step to calculate the "number of partitions" table that I showed first? or, more directly, the total number of partitions for any given number?



It looks to me that every number in the last table can be generated as the sum of the number directly above and the number just above and to the left.



Yes, I agree. But the desire is to generate the numbers on any given row without generating all the previous rows. I think that can be done for the permutation table, and perhaps for the "number of partitions table." But whether it will lend itself to a tractable analytic expression is not clear. But I think its an attractive line of inquiry to pursue.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
August 21st, 2019 at 6:32:12 AM permalink
Quote: gordonm888

Yes, I do something very similar, except I use the length of the partition. This is the table I calculate for the the first 10 numbers. In this table the number being partitioned is in the first column, and the row across the top is the length of the partitions. This table gives the number of partitions of a given length for each number - and, in the last column, the total number of partitions. However if you want to create the number of partitions of 10 of various lengths, it is necessary to first calculate values for the first 9 rows. And if you wanted to create a row for the partitions of 200, you would first need to calculate the rows for 1-199.

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
1
1
3
4
1
2
1
1
5
5
1
2
2
1
1
7
6
1
3
3
2
1
1
11
7
1
3
4
3
2
1
1
15
8
1
4
5
5
3
2
1
1
22
9
1
4
7
6
5
3
2
1
1
30
10
1
5
8
9
7
5
3
2
1
1
42


I think one approach is to seek analytical formulas for all the entries in any given row in this table and then sum to get the total number of partitions.

I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
2
1
4
4
1
3
3
1
8
5
1
4
6
4
1
16
6
1
5
10
10
5
1
32
7
1
6
15
20
15
6
1
64
8
1
7
21
35
35
21
7
1
128
9
1
8
28
56
70
56
28
8
1
256
10
1
9
36
84
126
126
84
36
9
1
512



Notice that this table appears to have distinct patterns and it may be possible to find analytical formulas to calculate these numbers.. The question in my mind is: if we can find algebraic formulas to calculate this 'permutations' table, might that be an intermediate step to calculate the "number of partitions" table that I showed first? or, more directly, the total number of partitions for any given number?



D'oh. The values in the 2nd table are combin(N,L) where the first column is N and the first row is L.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
kubikulann
kubikulann
  • Threads: 27
  • Posts: 905
Joined: Jun 28, 2011
August 21st, 2019 at 6:46:44 AM permalink
Quote: gordonm888


I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
2
1
4
4
1
3
3
1
8
5
1
4
6
4
1
16
6
1
5
10
10
5
1
32
7
1
6
15
20
15
6
1
64
8
1
7
21
35
35
21
7
1
128
9
1
8
28
56
70
56
28
8
1
256
10
1
9
36
84
126
126
84
36
9
1
512


This is Pascal’s table. (aka Binomial coefficients table)
Reperiet qui quaesiverit
gordonm888
Administrator
gordonm888
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
August 21st, 2019 at 12:32:59 PM permalink
Quote: kubikulann

Quote: gordonm888


I note that one can assign a number of permutations to any partition (e.g.: the partition 3-2-1-1 has 12 permutations, ) and then sum up the number of permutations for every entry in this table. When I do that I get this table:

1
2
3
4
5
6
7
8
9
10
Total
1
1
1
2
1
1
2
3
1
2
1
4
4
1
3
3
1
8
5
1
4
6
4
1
16
6
1
5
10
10
5
1
32
7
1
6
15
20
15
6
1
64
8
1
7
21
35
35
21
7
1
128
9
1
8
28
56
70
56
28
8
1
256
10
1
9
36
84
126
126
84
36
9
1
512


This is Pascal’s table. (aka Binomial coefficients table)



Thank you, Kubikulann! You are not only very smart, but apparently you know/remember more math than most of us, lol.

Well, Pascal's Triangle/Table has all the qualities we have been noticing. As Unjon pointed out, every table entry is the sum of two table entries above it. As I pointed out, every entry can be calculated independently as combin(n,k) and that the rows in the table, as I compiled it, sum to 2n. Its a remarkable triangle/table and has been very well studied and characterized by zillions of mathematicians.

RECAP
I arrived at Pascal's table by creating Table A - the table of partitions of N that are of length L, because we can sum across the rows to get the total partitions of N. Table A can be created readily by using recursive methods on a spreadsheet or in a computer program, so if you want to know the number of partitions of any N, you must first calculate rows 1...N-1 of the table. We are seeking a non-recursive way to calculate the partitions of any given N>

So, I created Table B -which for any given N,L is the sum of the permutations (Rearrangements in a linear sequence) of all the partitions of N that are length L. I was hoping this table might have entries that could be calculated directly and might be an intermediate step to directly calculating any row of Table A. And, eureka!, the Table B is the well-known Pascal's Table and every entry is indeed directly calculable as being combin(N,L).

So, can we use the value of an N,L entry in Pascal's table to derive the value of an N,L entry in Table A? I have started to work on that and my preliminary conclusion is that we will need to know the number of partitions for 1 to N-1 in order to go from the Nth row in Pascal's table to the Nth row in Table A. That is, we probably need to do the identical amount of work as the recursion method for calculating partitions. So, right now, starting with a row in Table B (Pascal's table) and deriving a row in Table A doesn't look like a promising approach.

I guess the thing to try next is to see whether there is a way of directly calculating all the entries in a Row in Table A. Obviously, seeking a non-recursive (direct) algorithm for calculating partitions of any given N is a very difficult problem.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
August 21st, 2019 at 2:13:17 PM permalink
Sorry to interrupt a good discussion, but here is a count of the number of pieces by size. The left column shows the piece size and along the top row is the base number that is getting partitioned.

Piece 1 2 3 4 5 6 7 8 9 10
1 1 2 4 7 12 19 30 45 67 97
2 1 1 3 4 8 11 19 26 41
3 1 1 2 4 6 9 15 21
4 1 1 2 3 6 8 13
5 1 1 2 3 5 8
6 1 1 2 3 5
7 1 1 2 3
8 1 1 2
9 1 1
10 1
Total 1 3 6 12 20 35 54 86 128 192


Offhand, the only interesting pattern I'm seeing is the total number of pieces generally divide lots of ways:

6 = 2*3
12 = 2*2*3
20 =2*2*5
35 = 5*7
54 = 2*3*3*3
86 = 2 * 43
128 = 2*2*2*2*2*2*2
192 = 2*2*2*2*2*2*3

I guess 86 is the exception.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
  • Jump to: