RS
RS
  • Threads: 62
  • Posts: 8626
Joined: Feb 11, 2014
October 5th, 2018 at 3:53:16 PM permalink
I saw this on another forum and noticed some of the guesses, IMO, were absolutely terrible. It goes like this: The OP makes a thread saying he's going to make 20-60 bets this weekend. After the weekend is over, he'll round his win % up (so there's no decimal). Whoever guesses it on the spot, wins $100. If no one guesses it exactly, then it carries on to next weekend's bets. He mentioned his year-to-date or this-season win % was 56%.

Many people made guesses, obviously. But I saw a lot of them were just truly terrible. Reminder: The actual win % gets rounded UP and you have to guess that number exactly (it's not "price is right rules" where it's the closest without going over).

I saw some guesses that couldn't even possibly win, like 51%. There's no way to get to 51% if you do between 20-60 bets, so that person can't even win -- he may as well have guessed 110%. Nvm, 30/59 would win for 51%.

Assume he'll only be making bets that are 50/50, he'll be making a random amount of bets between 20-60 (inclusive), and the win % is rounded up. (ie: 31 wins out of 43 bets is 0.72093023255, so that'd get rounded up to 73%) -- What is the best number to guess? If that number is already guessed, what's the second best number? Third? Fourth? ... 100'th?

You can't repeat someone else's guess.
Last edited by: RS on Oct 5, 2018
beachbumbabs
beachbumbabs
  • Threads: 101
  • Posts: 14268
Joined: May 21, 2013
October 5th, 2018 at 4:02:52 PM permalink
I would take 56.
If the House lost every hand, they wouldn't deal the game.
unJon
unJon
  • Threads: 16
  • Posts: 4842
Joined: Jul 1, 2018
October 5th, 2018 at 4:09:05 PM permalink
This would be a fun but slightly tedious exercise to map out, though I’m sure the programmers could do it efficiently. One question, by saying assume the bets made are 50/50, are you saying that he’s betting on a coin flip and we should ignore the 56% evidence that could suggest that the OP has an edge on these bets and that they may not be 50/50 for him?
The race is not always to the swift, nor the battle to the strong; but that is the way to bet.
djatc
djatc
  • Threads: 83
  • Posts: 4477
Joined: Jan 15, 2013
October 5th, 2018 at 4:10:21 PM permalink
0% 5chars
"Man Babes" #AxelFabulous
GWAE
GWAE
  • Threads: 93
  • Posts: 9854
Joined: Sep 20, 2013
October 5th, 2018 at 4:10:27 PM permalink
Is he picking the games before people guess? I bet it is possible to see all the guesses and then pick the amount of games that would be impossible to lose.
Expect the worst and you will never be disappointed. I AM NOT PART OF GWAE RADIO SHOW
RS
RS
  • Threads: 62
  • Posts: 8626
Joined: Feb 11, 2014
October 5th, 2018 at 4:25:48 PM permalink
Quote: unJon

This would be a fun but slightly tedious exercise to map out, though I’m sure the programmers could do it efficiently. One question, by saying assume the bets made are 50/50, are you saying that he’s betting on a coin flip and we should ignore the 56% evidence that could suggest that the OP has an edge on these bets and that they may not be 50/50 for him?


I don't know what kind of bets he's actually making, but figuring out the optimal guess wouldn't be possible if you didn't know what kind of bets he was making. So I'm just going to assume they are 50/50 coin-flips where he doesn't have an edge.

I was mostly thinking of this along the lines of mapping it out like you were saying and figuring out which number is the most likely. Also, what are all the numbers that cannot possibly win?

Quote: GWAE

Is he picking the games before people guess? I bet it is possible to see all the guesses and then pick the amount of games that would be impossible to lose.


Either way, he's going to pay out the $100, either it's going to be this week, next week, the following, etc. It's not like he's trying to win/lose some % to avoid paying out the $100 freeroll.
GWAE
GWAE
  • Threads: 93
  • Posts: 9854
Joined: Sep 20, 2013
October 5th, 2018 at 4:47:30 PM permalink
Quote: RS

I don't know what kind of bets he's actually making, but figuring out the optimal guess wouldn't be possible if you didn't know what kind of bets he was making. So I'm just going to assume they are 50/50 coin-flips where he doesn't have an edge.

I was mostly thinking of this along the lines of mapping it out like you were saying and figuring out which number is the most likely. Also, what are all the numbers that cannot possibly win?


Either way, he's going to pay out the $100, either it's going to be this week, next week, the following, etc. It's not like he's trying to win/lose some % to avoid paying out the $100 freeroll.



Unless he can make it work all season and never pay it out at all
Expect the worst and you will never be disappointed. I AM NOT PART OF GWAE RADIO SHOW
gamerfreak
gamerfreak
  • Threads: 57
  • Posts: 3540
Joined: Dec 28, 2014
October 5th, 2018 at 4:52:34 PM permalink
Quote: RS

I don't know what kind of bets he's actually making, but figuring out the optimal guess wouldn't be possible if you didn't know what kind of bets he was making. So I'm just going to assume they are 50/50 coin-flips where he doesn't have an edge.


Why wouldn’t the answer be 50% in that situation?
RS
RS
  • Threads: 62
  • Posts: 8626
Joined: Feb 11, 2014
October 5th, 2018 at 5:25:42 PM permalink
Quote: gamerfreak

Why wouldn’t the answer be 50% in that situation?


It could be. I'm not sure. And even if it is..then what's the next best answer?
unJon
unJon
  • Threads: 16
  • Posts: 4842
Joined: Jul 1, 2018
October 5th, 2018 at 5:43:44 PM permalink
Quote: gamerfreak

Why wouldn’t the answer be 50% in that situation?

Not clear to me 50% is correct since 50% is impossible if he picks an odd number of games between 20-60. ignore. Did math too quickly and not right.
The race is not always to the swift, nor the battle to the strong; but that is the way to bet.
beachbumbabs
beachbumbabs
  • Threads: 101
  • Posts: 14268
Joined: May 21, 2013
October 5th, 2018 at 6:16:52 PM permalink
If he's doing the picking, why would he get 50%? He's only going to pick games he feels he has some insight on, or why would the number vary between 20 and 60?

I would think he could do better than 50% with some regularity, or you wouldn't even know he was doing any picks.

I think the winning range is 55-59, and since he's been running 56, that's where I'd start. Next guess is 55%, then 57, etc.

You don't say for sure, but I take it he's starting fresh, them building on that. If he's building on his record so far, then even more reason to pick 56.
If the House lost every hand, they wouldn't deal the game.
TomG
TomG
  • Threads: 16
  • Posts: 2491
Joined: Sep 26, 2010
October 6th, 2018 at 10:56:26 AM permalink
Picking a random number of games between 20 and 60 games would mean there are 1681 possible different won-loss records. I think, (61 x 61 / 2) - (20 x 21 / 2). Use previous won-loss records to decide the probability for each game (or just assuming 50% would be sufficient). Then determine the probability of each record, eg 0 wins 20 losses, 1 win 19 losses all the way to 59 wins and 1 loss, and 60 wins and 0 losses. Convert each record into a percentage and add all the probabilities for each winning percentage together.

Intuition tells me 50% is the best guess.
RS
RS
  • Threads: 62
  • Posts: 8626
Joined: Feb 11, 2014
October 8th, 2018 at 4:04:54 AM permalink
Okay so I worked on this for a few minutes just now...and I'm hit some roadblocks.

All in Excel. First, I determined the probability of each possible result (ie: 0-20, 1-19, 2-18....59-1, 60-0). I have that in a square grid thingie. Pretty straight forward.

Next, I determined the win-rate % of each of those records. That's super simple: 0/20 = 0, 1/20 = 0.05, 2/20 = 0.1 ..... 59/60 = (whatever that % is), and 60/60 = 100%.

Then I set up a "round-up" table, which is the same thing, but all of them are rounded up, as described in the OP. EG: 52.36% goes to 53%.

Now I'm having trouble figuring out how to add up all these numbers and their respective probabilities. I have the probability that the weekend ends in a "0-20" record, for instance. But I don't know of a convenient way to add up all the "weekend record probabilities" (probability of that even occurring) for each win-rates from 0% to 100%. I basically need a function that would behave like the following:


=FUNCTION(winrates!A1:AO61, probability!A1:AO61, 0.52)

Where 'winrates' sheet shows all the winrates from 0 to 100% for each outcome, and 'probability' sheet shows the probability that exact record happens, 0.52 being the number I'm looking up (ie: 52%)....and the output would show how likely a weekend is to end with that winrate.

The function would search for all "0.52" entries in the range winrates!A1:AO61 and return the sum of those respective cells from probability!A1:AO61.



note in probabilities, the format is kinda messed up and doesn't {TAB} properly
probabilities:

9.53674E-07 4.76837E-07 2.38419E-07 1.19209E-07 5.96046E-08 2.98023E-08 1.49012E-08 7.45058E-09 3.72529E-09 1.86265E-09 9.31323E-10 4.65661E-10 2.32831E-10 1.16415E-10 5.82077E-11 2.91038E-11 1.45519E-11 7.27596E-12 3.63798E-12 1.81899E-12 9.09495E-13 4.54747E-13 2.27374E-13 1.13687E-13 5.68434E-14 2.84217E-14 1.42109E-14 7.10543E-15 3.55271E-15 1.77636E-15 8.88178E-16 4.44089E-16 2.22045E-16 1.11022E-16 5.55112E-17 2.77556E-17 1.38778E-17 6.93889E-18 3.46945E-18 1.73472E-18 8.67362E-19
1.90735E-05 1.00136E-05 5.24521E-06 2.74181E-06 1.43051E-06 7.45058E-07 3.8743E-07 2.01166E-07 1.04308E-07 5.40167E-08 2.79397E-08 1.44355E-08 7.45058E-09 3.84171E-09 1.97906E-09 1.01863E-09 5.23869E-10 2.6921E-10 1.38243E-10 7.09406E-11 3.63798E-11 1.86446E-11 9.54969E-12 4.88853E-12 2.50111E-12 1.27898E-12 6.53699E-13 3.33955E-13 1.7053E-13 8.70415E-14 4.44089E-14 2.26485E-14 1.15463E-14 5.88418E-15 2.9976E-15 1.52656E-15 7.77156E-16 3.95517E-16 2.01228E-16 1.02349E-16 5.20417E-17
0.000181198 0.000100136 5.50747E-05 3.016E-05 1.64509E-05 8.9407E-06 4.84288E-06 2.61515E-06 1.40816E-06 7.56234E-07 4.05125E-07 2.16532E-07 1.15484E-07 6.14673E-08 3.26545E-08 1.73168E-08 9.16771E-09 4.84579E-09 2.5575E-09 1.34787E-09 7.09406E-10 3.72893E-10 1.95769E-10 1.02659E-10 5.37739E-11 2.81375E-11 1.47082E-11 7.68097E-12 4.00746E-12 2.089E-12 1.08802E-12 5.66214E-13 2.94431E-13 1.52989E-13 7.94365E-14 4.1217E-14 2.13718E-14 1.10745E-14 5.735E-15 2.96811E-15 1.53523E-15
0.001087189 0.000634193 0.000367165 0.00021112 0.00012064 6.85453E-05 3.8743E-05 2.17929E-05 1.22041E-05 6.80611E-06 3.78117E-06 2.09315E-06 1.15484E-06 6.35162E-07 3.48315E-07 1.90485E-07 1.03901E-07 5.65342E-08 3.069E-08 1.66237E-08 8.98581E-09 4.84761E-09 2.61025E-09 1.40301E-09 7.52834E-10 4.03304E-10 2.15721E-10 1.15215E-10 6.14477E-11 3.27276E-11 1.74083E-11 9.24816E-12 4.90719E-12 2.60081E-12 1.3769E-12 7.28168E-13 3.84692E-13 2.03032E-13 1.07053E-13 5.63941E-14 2.96811E-14
0.004620552 0.00285387 0.001744032 0.001055598 0.000633359 0.000376999 0.000222772 0.000130758 7.62753E-05 4.42397E-05 2.55229E-05 1.4652E-05 8.37259E-06 4.76371E-06 2.69944E-06 1.52388E-06 8.57181E-07 4.80541E-07 2.68537E-07 1.49614E-07 8.31187E-08 4.60523E-08 2.54499E-08 1.40301E-08 7.71655E-09 4.23469E-09 2.319E-09 1.26736E-09 6.91287E-10 3.76367E-10 2.04547E-10 1.10978E-10 6.0113E-11 3.25101E-11 1.75555E-11 9.46618E-12 5.09717E-12 2.74093E-12 1.47198E-12 7.89518E-13 4.22956E-13
0.014785767 0.009703159 0.006278515 0.004011273 0.002533436 0.001583397 0.000980198 0.000601485 0.000366122 0.000221198 0.000132719 7.9121E-05 4.68865E-05 2.76295E-05 1.61966E-05 9.44803E-06 5.48596E-06 3.17157E-06 1.82605E-06 1.0473E-06 5.98455E-07 3.40787E-07 1.9342E-07 1.09435E-07 6.17324E-08 3.47245E-08 1.94796E-08 1.08993E-08 6.08333E-09 3.38731E-09 1.88184E-09 1.04319E-09 5.77085E-10 3.18599E-10 1.75555E-10 9.6555E-11 5.30106E-11 2.90539E-11 1.58974E-11 8.6847E-12 4.73711E-12
0.036964417 0.025875092 0.017789125 0.01203382 0.008022547 0.005277991 0.003430694 0.002205446 0.001403466 0.000884794 0.000552996 0.000342858 0.000210989 0.000128938 7.82837E-05 4.72402E-05 2.83441E-05 1.6915E-05 1.00433E-05 5.93468E-06 3.49099E-06 2.04472E-06 1.19275E-06 6.93087E-07 4.01261E-07 2.31497E-07 1.33111E-07 7.6295E-08 4.35972E-08 2.48402E-08 1.41138E-08 7.99781E-09 4.5205E-09 2.54879E-09 1.4337E-09 8.04625E-10 4.5059E-10 2.518E-10 1.40427E-10 7.81623E-11 4.34235E-11
0.073928833 0.055446625 0.040660858 0.029224992 0.020629406 0.014325976 0.009801984 0.006616339 0.004410893 0.002907179 0.001895986 0.001224491 0.000783674 0.000497332 0.000313135 0.000195709 0.000121475 7.49094E-05 4.59122E-05 2.79778E-05 1.69562E-05 1.02236E-05 6.13416E-06 3.66346E-06 2.17827E-06 1.28977E-06 7.60631E-07 4.46871E-07 2.61583E-07 1.5259E-07 8.87152E-08 5.14145E-08 2.97061E-08 1.71133E-08 9.83106E-09 5.63238E-09 3.2185E-09 1.83455E-09 1.04317E-09 5.918E-10 3.34981E-10
0.120134354 0.097031593 0.076239109 0.058449984 0.043837488 0.032233447 0.023279712 0.016540848 0.011578593 0.007994743 0.005450961 0.003673474 0.002448983 0.001616328 0.00105683 0.000684983 0.000440346 0.00028091 0.00017791 0.000111911 6.99444E-05 4.34503E-05 2.6837E-05 1.64856E-05 1.00745E-05 6.12639E-06 3.70808E-06 2.23435E-06 1.34061E-06 8.01098E-07 4.76844E-07 2.8278E-07 1.67097E-07 9.84016E-08 5.77575E-08 3.37943E-08 1.97133E-08 1.14659E-08 6.65023E-09 3.8467E-09 2.21925E-09
0.160179138 0.140156746 0.11859417 0.097416639 0.077933311 0.0608854 0.046559423 0.034919567 0.025730208 0.0186544 0.013324572 0.009387766 0.00653062 0.004489801 0.003053065 0.002054948 0.001369965 0.000905155 0.000593033 0.000385471 0.000248691 0.000159318 0.000101384 6.41105E-05 4.0298E-05 2.51863E-05 1.56563E-05 9.6822E-06 5.95828E-06 3.64945E-06 2.22527E-06 1.35106E-06 8.16919E-07 4.92008E-07 2.95205E-07 1.76481E-07 1.05138E-07 6.24255E-08 3.69457E-08 2.1798E-08 1.28223E-08
0.176197052 0.168188095 0.154172421 0.136383295 0.116899967 0.097416639 0.079151019 0.062855221 0.048887394 0.037308801 0.027981601 0.020653086 0.015020426 0.010775523 0.007632662 0.005342864 0.003698906 0.002534435 0.001719795 0.001156414 0.000770943 0.000509817 0.000334567 0.000217976 0.000141043 9.06706E-05 5.79284E-05 3.67924E-05 2.32373E-05 1.45978E-05 9.12362E-06 5.67444E-06 3.51275E-06 2.16483E-06 1.32842E-06 8.11813E-07 4.94147E-07 2.99642E-07 1.81034E-07 1.0899E-07 6.53939E-08
0.160179138 0.168188095 0.168188095 0.161180258 0.148781776 0.132840872 0.115128756 0.097139888 0.079997554 0.064442474 0.050875638 0.039428619 0.030040853 0.02253064 0.016653081 0.012142872 0.008742868 0.006220887 0.004377661 0.003048728 0.002102571 0.001436757 0.000973287 0.000653927 0.000435951 0.000288497 0.000189584 0.000123756 8.02743E-05 5.17558E-05 3.31768E-05 2.11502E-05 1.34123E-05 8.46254E-06 5.31369E-06 3.32105E-06 2.06643E-06 1.28029E-06 7.89966E-07 4.855E-07 2.97245E-07
0.120134354 0.140156746 0.154172421 0.161180258 0.161180258 0.154981017 0.143910944 0.12951985 0.113329869 0.096663712 0.080553093 0.065714365 0.052571492 0.041306172 0.031918406 0.024285744 0.018214308 0.013478588 0.009849737 0.007113699 0.005081214 0.003591892 0.002514325 0.001743806 0.001198867 0.000817409 0.000552953 0.000371269 0.000247512 0.000163893 0.000107825 7.05007E-05 4.58254E-05 2.96189E-05 1.90407E-05 1.21772E-05 7.74913E-06 4.90778E-06 3.09403E-06 1.942E-06 1.21375E-06
0.073928833 0.097031593 0.11859417 0.136383295 0.148781776 0.154981017 0.154981017 0.149445981 0.139482915 0.126406392 0.111535052 0.096044072 0.080879219 0.066725356 0.054015764 0.042967085 0.033626414 0.025920361 0.019699474 0.014774606 0.010944152 0.008012683 0.005802288 0.004158306 0.002951056 0.002074961 0.001446185 0.000999569 0.000685419 0.000466466 0.000315179 0.000211502 0.000141001 9.34134E-05 6.15161E-05 4.02784E-05 2.62278E-05 1.69885E-05 1.09481E-05 7.02108E-06 4.48154E-06
0.036964417 0.055446625 0.076239109 0.097416639 0.116899967 0.132840872 0.143910944 0.149445981 0.149445981 0.144464448 0.13543542 0.123485236 0.109764654 0.095321937 0.081023646 0.067519705 0.055243395 0.044434905 0.035177633 0.027438554 0.02110658 0.016025366 0.012019025 0.008910656 0.006534481 0.004742769 0.003408865 0.002427525 0.001713547 0.001199483 0.000832974 0.000574077 0.000392789 0.000266895 0.000180154 0.000120835 8.05568E-05 5.33923E-05 3.51904E-05 2.30693E-05 1.50452E-05
0.014785767 0.025875092 0.040660858 0.058449984 0.077933311 0.097416639 0.115128756 0.12951985 0.139482915 0.144464448 0.144464448 0.139949934 0.131717585 0.12074112 0.108031528 0.094527587 0.081023646 0.068133521 0.056284213 0.045730923 0.036584738 0.028845659 0.022435513 0.017227269 0.013068962 0.009801722 0.007272245 0.005340555 0.00388404 0.002798794 0.001999138 0.001416056 0.000995067 0.000693928 0.000480412 0.000330283 0.000225559 0.000153058 0.000103225 6.92078E-05 4.61385E-05
0.004620552 0.009703159 0.017789125 0.029224992 0.043837488 0.0608854 0.079151019 0.097139888 0.113329869 0.126406392 0.13543542 0.139949934 0.139949934 0.13583376 0.12828744 0.118159484 0.106343535 0.093683591 0.080908556 0.068596384 0.057163653 0.046874196 0.037859927 0.03014772 0.023687494 0.018378228 0.014089975 0.01068111 0.008010833 0.005947436 0.004373115 0.003186127 0.002301091 0.001648079 0.001171003 0.000825708 0.000577995 0.000401777 0.000277418 0.000190321 0.000129765
0.001087189 0.00285387 0.006278515 0.01203382 0.020629406 0.032233447 0.046559423 0.062855221 0.079997554 0.096663712 0.111535052 0.123485236 0.131717585 0.13583376 0.13583376 0.1320606 0.125110042 0.115726789 0.10470519 0.092806873 0.080701628 0.068932641 0.057903418 0.047881673 0.039014696 0.031351095 0.024864662 0.019477318 0.015079214 0.011545023 0.00874623 0.006559672 0.004872899 0.003586995 0.002617537 0.00189427 0.001359989 0.000968992 0.000685385 0.000481401 0.000335861
0.000181198 0.000634193 0.001744032 0.004011273 0.008022547 0.014325976 0.023279712 0.034919567 0.048887394 0.064442474 0.080553093 0.096044072 0.109764654 0.12074112 0.12828744 0.1320606 0.1320606 0.128585321 0.122156055 0.113430622 0.103118747 0.091910188 0.080421414 0.069162416 0.058522045 0.048768371 0.040059733 0.032462197 0.025969758 0.020524486 0.016034755 0.012390492 0.009475082 0.007173991 0.005380493 0.003999015 0.002946643 0.002153316 0.001561154 0.001123269 0.000802335
1.90735E-05 0.000100136 0.000367165 0.001055598 0.002533436 0.005277991 0.009801984 0.016540848 0.025730208 0.037308801 0.050875638 0.065714365 0.080879219 0.095321937 0.108031528 0.118159484 0.125110042 0.128585321 0.128585321 0.125370688 0.119400655 0.111259701 0.101584945 0.091003179 0.080082798 0.069302421 0.059035396 0.049547564 0.041004881 0.033487319 0.027005903 0.021520329 0.016955411 0.013215246 0.010194619 0.007787556 0.005893286 0.004419964 0.00328664 0.002423897 0.001773583
9.53674E-07 1.00136E-05 5.50747E-05 0.00021112 0.000633359 0.001583397 0.003430694 0.006616339 0.011578593 0.0186544 0.027981601 0.039428619 0.052571492 0.066725356 0.081023646 0.094527587 0.106343535 0.115726789 0.122156055 0.125370688 0.125370688 0.122385671 0.116822686 0.109203815 0.100103497 0.090093148 0.079697784 0.06936659 0.059457077 0.050230979 0.041859149 0.034432526 0.027976427 0.022465919 0.017840583 0.014017601 0.010902578 0.008397932 0.006408948 0.004847794 0.003635846
4.76837E-07 5.24521E-06 3.016E-05 0.00012064 0.000376999 0.000980198 0.002205446 0.004410893 0.007994743 0.013324572 0.020653086 0.030040853 0.041306172 0.054015764 0.067519705 0.081023646 0.093683591 0.10470519 0.113430622 0.119400655 0.122385671 0.122385671 0.119604179 0.114403997 0.107253747 0.098673447 0.089185616 0.079276103 0.06936659 0.059798785 0.050828967 0.042630746 0.035303587 0.028884753 0.023362668 0.018690134 0.014796356 0.011597144 0.009003046 0.00692542
2.38419E-07 2.74181E-06 1.64509E-05 6.85453E-05 0.000222772 0.000601485 0.001403466 0.002907179 0.005450961 0.009387766 0.015020426 0.02253064 0.031918406 0.042967085 0.055243395 0.068133521 0.080908556 0.092806873 0.103118747 0.111259701 0.116822686 0.119604179 0.119604179 0.117004088 0.112128918 0.105401182 0.097293399 0.088284751 0.078825671 0.069312228 0.060070597 0.051350672 0.043327129 0.036105941 0.029734304 0.024212219 0.019504288 0.015550716 0.012276881
1.19209E-07 1.43051E-06 8.9407E-06 3.8743E-05 0.000130758 0.000366122 0.000884794 0.001895986 0.003673474 0.00653062 0.010775523 0.016653081 0.024285744 0.033626414 0.044434905 0.056284213 0.068596384 0.080701628 0.091910188 0.101584945 0.109203815 0.114403997 0.117004088 0.117004088 0.114566503 0.109983843 0.103638621 0.095961686 0.087393678 0.078352953 0.069211775 0.060281224 0.051804176 0.043955059 0.036844682 0.030528451 0.025016369 0.020283543
5.96046E-08 7.45058E-07 4.84288E-06 2.17929E-05 7.62753E-05 0.000221198 0.000552996 0.001224491 0.002448983 0.004489801 0.007632662 0.012142872 0.018214308 0.025920361 0.035177633 0.045730923 0.057163653 0.068932641 0.080421414 0.091003179 0.100103497 0.107253747 0.112128918 0.114566503 0.114566503 0.112275173 0.107956897 0.101959291 0.094676485 0.086514719 0.077863247 0.069072235 0.060438206 0.052196632 0.044520657 0.037524554 0.031270461
2.98023E-08 3.8743E-07 2.61515E-06 1.22041E-05 4.42397E-05 0.000132719 0.000342858 0.000783674 0.001616328 0.003053065 0.005342864 0.008742868 0.013478588 0.019699474 0.027438554 0.036584738 0.046874196 0.057903418 0.069162416 0.080082798 0.090093148 0.098673447 0.105401182 0.109983843 0.112275173 0.112275173 0.110116035 0.106037663 0.100357074 0.093435896 0.085649572 0.077360904 0.068899555 0.060548094 0.052534375 0.045029465
1.49012E-08 2.01166E-07 1.40816E-06 6.80611E-06 2.55229E-05 7.9121E-05 0.000210989 0.000497332 0.00105683 0.002054948 0.003698906 0.006220887 0.009849737 0.014774606 0.02110658 0.028845659 0.037859927 0.047881673 0.058522045 0.069302421 0.079697784 0.089185616 0.097293399 0.103638621 0.107956897 0.110116035 0.110116035 0.108076849 0.104216961 0.098826429 0.092238 0.084799452 0.076849503 0.068698798 0.060616587
7.45058E-09 1.04308E-07 7.56234E-07 3.78117E-06 1.4652E-05 4.68865E-05 0.000128938 0.000313135 0.000684983 0.001369965 0.002534435 0.004377661 0.007113699 0.010944152 0.016025366 0.022435513 0.03014772 0.039014696 0.048768371 0.059035396 0.06936659 0.079276103 0.088284751 0.095961686 0.101959291 0.106037663 0.108076849 0.108076849 0.106146905 0.102486667 0.097362334 0.091080893 0.083965198 0.076331998
3.72529E-09 5.40167E-08 4.05125E-07 2.09315E-06 8.37259E-06 2.76295E-05 7.82837E-05 0.000195709 0.000440346 0.000905155 0.001719795 0.003048728 0.005081214 0.008012683 0.012019025 0.017227269 0.023687494 0.031351095 0.040059733 0.049547564 0.059457077 0.06936659 0.078825671 0.087393678 0.094676485 0.100357074 0.104216961 0.106146905 0.106146905 0.104316786 0.10083956 0.095960226 0.089962712
1.86265E-09 2.79397E-08 2.16532E-07 1.15484E-06 4.76371E-06 1.61966E-05 4.72402E-05 0.000121475 0.00028091 0.000593033 0.001156414 0.002102571 0.003591892 0.005802288 0.008910656 0.013068962 0.018378228 0.024864662 0.032462197 0.041004881 0.050230979 0.059798785 0.069312228 0.078352953 0.086514719 0.093435896 0.098826429 0.102486667 0.104316786 0.104316786 0.102578173 0.0992692
9.31323E-10 1.44355E-08 1.15484E-07 6.35162E-07 2.69944E-06 9.44803E-06 2.83441E-05 7.49094E-05 0.00017791 0.000385471 0.000770943 0.001436757 0.002514325 0.004158306 0.006534481 0.009801722 0.014089975 0.019477318 0.025969758 0.033487319 0.041859149 0.050828967 0.060070597 0.069211775 0.077863247 0.085649572 0.092238 0.097362334 0.10083956 0.102578173 0.102578173
4.65661E-10 7.45058E-09 6.14673E-08 3.48315E-07 1.52388E-06 5.48596E-06 1.6915E-05 4.59122E-05 0.000111911 0.000248691 0.000509817 0.000973287 0.001743806 0.002951056 0.004742769 0.007272245 0.01068111 0.015079214 0.020524486 0.027005903 0.034432526 0.042630746 0.051350672 0.060281224 0.069072235 0.077360904 0.084799452 0.091080893 0.095960226 0.0992692
2.32831E-10 3.84171E-09 3.26545E-08 1.90485E-07 8.57181E-07 3.17157E-06 1.00433E-05 2.79778E-05 6.99444E-05 0.000159318 0.000334567 0.000653927 0.001198867 0.002074961 0.003408865 0.005340555 0.008010833 0.011545023 0.016034755 0.021520329 0.027976427 0.035303587 0.043327129 0.051804176 0.060438206 0.068899555 0.076849503 0.083965198 0.089962712
1.16415E-10 1.97906E-09 1.73168E-08 1.03901E-07 4.80541E-07 1.82605E-06 5.93468E-06 1.69562E-05 4.34503E-05 0.000101384 0.000217976 0.000435951 0.000817409 0.001446185 0.002427525 0.00388404 0.005947436 0.00874623 0.012390492 0.016955411 0.022465919 0.028884753 0.036105941 0.043955059 0.052196632 0.060548094 0.068698798 0.076331998
5.82077E-11 1.01863E-09 9.16771E-09 5.65342E-08 2.68537E-07 1.0473E-06 3.49099E-06 1.02236E-05 2.6837E-05 6.41105E-05 0.000141043 0.000288497 0.000552953 0.000999569 0.001713547 0.002798794 0.004373115 0.006559672 0.009475082 0.013215246 0.017840583 0.023362668 0.029734304 0.036844682 0.044520657 0.052534375 0.060616587
2.91038E-11 5.23869E-10 4.84579E-09 3.069E-08 1.49614E-07 5.98455E-07 2.04472E-06 6.13416E-06 1.64856E-05 4.0298E-05 9.06706E-05 0.000189584 0.000371269 0.000685419 0.001199483 0.001999138 0.003186127 0.004872899 0.007173991 0.010194619 0.014017601 0.018690134 0.024212219 0.030528451 0.037524554 0.045029465
1.45519E-11 2.6921E-10 2.5575E-09 1.66237E-08 8.31187E-08 3.40787E-07 1.19275E-06 3.66346E-06 1.00745E-05 2.51863E-05 5.79284E-05 0.000123756 0.000247512 0.000466466 0.000832974 0.001416056 0.002301091 0.003586995 0.005380493 0.007787556 0.010902578 0.014796356 0.019504288 0.025016369 0.031270461
7.27596E-12 1.38243E-10 1.34787E-09 8.98581E-09 4.60523E-08 1.9342E-07 6.93087E-07 2.17827E-06 6.12639E-06 1.56563E-05 3.67924E-05 8.02743E-05 0.000163893 0.000315179 0.000574077 0.000995067 0.001648079 0.002617537 0.003999015 0.005893286 0.008397932 0.011597144 0.015550716 0.020283543
3.63798E-12 7.09406E-11 7.09406E-10 4.84761E-09 2.54499E-08 1.09435E-07 4.01261E-07 1.28977E-06 3.70808E-06 9.6822E-06 2.32373E-05 5.17558E-05 0.000107825 0.000211502 0.000392789 0.000693928 0.001171003 0.00189427 0.002946643 0.004419964 0.006408948 0.009003046 0.012276881
1.81899E-12 3.63798E-11 3.72893E-10 2.61025E-09 1.40301E-08 6.17324E-08 2.31497E-07 7.60631E-07 2.23435E-06 5.95828E-06 1.45978E-05 3.31768E-05 7.05007E-05 0.000141001 0.000266895 0.000480412 0.000825708 0.001359989 0.002153316 0.00328664 0.004847794 0.00692542
9.09495E-13 1.86446E-11 1.95769E-10 1.40301E-09 7.71655E-09 3.47245E-08 1.33111E-07 4.46871E-07 1.34061E-06 3.64945E-06 9.12362E-06 2.11502E-05 4.58254E-05 9.34134E-05 0.000180154 0.000330283 0.000577995 0.000968992 0.001561154 0.002423897 0.003635846
4.54747E-13 9.54969E-12 1.02659E-10 7.52834E-10 4.23469E-09 1.94796E-08 7.6295E-08 2.61583E-07 8.01098E-07 2.22527E-06 5.67444E-06 1.34123E-05 2.96189E-05 6.15161E-05 0.000120835 0.000225559 0.000401777 0.000685385 0.001123269 0.001773583
2.27374E-13 4.88853E-12 5.37739E-11 4.03304E-10 2.319E-09 1.08993E-08 4.35972E-08 1.5259E-07 4.76844E-07 1.35106E-06 3.51275E-06 8.46254E-06 1.90407E-05 4.02784E-05 8.05568E-05 0.000153058 0.000277418 0.000481401 0.000802335
1.13687E-13 2.50111E-12 2.81375E-11 2.15721E-10 1.26736E-09 6.08333E-09 2.48402E-08 8.87152E-08 2.8278E-07 8.16919E-07 2.16483E-06 5.31369E-06 1.21772E-05 2.62278E-05 5.33923E-05 0.000103225 0.000190321 0.000335861
5.68434E-14 1.27898E-12 1.47082E-11 1.15215E-10 6.91287E-10 3.38731E-09 1.41138E-08 5.14145E-08 1.67097E-07 4.92008E-07 1.32842E-06 3.32105E-06 7.74913E-06 1.69885E-05 3.51904E-05 6.92078E-05 0.000129765
2.84217E-14 6.53699E-13 7.68097E-12 6.14477E-11 3.76367E-10 1.88184E-09 7.99781E-09 2.97061E-08 9.84016E-08 2.95205E-07 8.11813E-07 2.06643E-06 4.90778E-06 1.09481E-05 2.30693E-05 4.61385E-05
1.42109E-14 3.33955E-13 4.00746E-12 3.27276E-11 2.04547E-10 1.04319E-09 4.5205E-09 1.71133E-08 5.77575E-08 1.76481E-07 4.94147E-07 1.28029E-06 3.09403E-06 7.02108E-06 1.50452E-05
7.10543E-15 1.7053E-13 2.089E-12 1.74083E-11 1.10978E-10 5.77085E-10 2.54879E-09 9.83106E-09 3.37943E-08 1.05138E-07 2.99642E-07 7.89966E-07 1.942E-06 4.48154E-06
3.55271E-15 8.70415E-14 1.08802E-12 9.24816E-12 6.0113E-11 3.18599E-10 1.4337E-09 5.63238E-09 1.97133E-08 6.24255E-08 1.81034E-07 4.855E-07 1.21375E-06
1.77636E-15 4.44089E-14 5.66214E-13 4.90719E-12 3.25101E-11 1.75555E-10 8.04625E-10 3.2185E-09 1.14659E-08 3.69457E-08 1.0899E-07 2.97245E-07
8.88178E-16 2.26485E-14 2.94431E-13 2.60081E-12 1.75555E-11 9.6555E-11 4.5059E-10 1.83455E-09 6.65023E-09 2.1798E-08 6.53939E-08
4.44089E-16 1.15463E-14 1.52989E-13 1.3769E-12 9.46618E-12 5.30106E-11 2.518E-10 1.04317E-09 3.8467E-09 1.28223E-08
2.22045E-16 5.88418E-15 7.94365E-14 7.28168E-13 5.09717E-12 2.90539E-11 1.40427E-10 5.918E-10 2.21925E-09
1.11022E-16 2.9976E-15 4.1217E-14 3.84692E-13 2.74093E-12 1.58974E-11 7.81623E-11 3.34981E-10
5.55112E-17 1.52656E-15 2.13718E-14 2.03032E-13 1.47198E-12 8.6847E-12 4.34235E-11
2.77556E-17 7.77156E-16 1.10745E-14 1.07053E-13 7.89518E-13 4.73711E-12
1.38778E-17 3.95517E-16 5.735E-15 5.63941E-14 4.22956E-13
6.93889E-18 2.01228E-16 2.96811E-15 2.96811E-14
3.46945E-18 1.02349E-16 1.53523E-15
1.73472E-18 5.20417E-17
8.67362E-19



winrates:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2
10 10 10 9 9 8 8 8 8 7 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4
15 15 14 14 13 12 12 12 11 11 10 10 10 10 9 9 9 9 8 8 8 8 8 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 5
20 20 19 18 17 16 16 15 15 14 14 13 13 13 12 12 12 11 11 11 10 10 10 10 10 9 9 9 9 9 8 8 8 8 8 8 8 8 7 7 7
25 24 23 22 21 20 20 19 18 18 17 17 16 16 15 15 14 14 14 13 13 13 12 12 12 12 11 11 11 11 10 10 10 10 10 10 9 9 9 9 9
30 29 28 27 25 24 24 23 22 21 20 20 19 19 18 18 17 17 16 16 15 15 15 14 14 14 14 13 13 13 12 12 12 12 12 11 11 11 11 11 10
35 34 32 31 30 28 27 26 25 25 24 23 22 22 21 20 20 19 19 18 18 18 17 17 16 16 16 15 15 15 14 14 14 14 13 13 13 13 13 12 12
40 39 37 35 34 32 31 30 29 28 27 26 25 25 24 23 23 22 22 21 20 20 20 19 19 18 18 18 17 17 16 16 16 16 15 15 15 15 14 14 14
45 43 41 40 38 36 35 34 33 32 30 30 29 28 27 26 25 25 24 24 23 22 22 21 21 20 20 20 19 19 18 18 18 17 17 17 17 16 16 16 15
50 48 46 44 42 40 39 38 36 35 34 33 32 31 30 29 28 28 27 26 25 25 24 24 23 23 22 22 21 21 20 20 20 19 19 19 18 18 18 17 17
55 53 50 48 46 44 43 41 40 38 37 36 35 34 33 32 31 30 29 29 28 27 27 26 25 25 24 24 23 23 22 22 22 21 21 20 20 20 19 19 19
60 58 55 53 50 48 47 45 43 42 40 39 38 37 36 35 34 33 32 31 30 30 29 28 28 27 27 26 25 25 24 24 24 23 23 22 22 22 21 21 20
65 62 60 57 55 52 50 49 47 45 44 42 41 40 39 38 37 36 35 34 33 32 31 31 30 29 29 28 28 27 26 26 25 25 25 24 24 23 23 23 22
70 67 64 61 59 56 54 52 50 49 47 46 44 43 42 40 39 38 37 36 35 35 34 33 32 32 31 30 30 29 28 28 27 27 26 26 25 25 25 24 24
75 72 69 66 63 60 58 56 54 52 50 49 47 46 45 43 42 41 40 39 38 37 36 35 35 34 33 32 32 31 30 30 29 29 28 28 27 27 26 26 25
80 77 73 70 67 64 62 60 58 56 54 52 50 49 48 46 45 44 43 42 40 40 39 38 37 36 35 35 34 33 32 32 31 31 30 30 29 29 28 28 27
85 81 78 74 71 68 66 63 61 59 57 55 54 52 50 49 48 46 45 44 43 42 41 40 39 38 37 37 36 35 34 34 33 33 32 31 31 30 30 29 29
90 86 82 79 75 72 70 67 65 63 60 59 57 55 53 52 50 49 48 47 45 44 43 42 41 40 40 39 38 37 36 36 35 34 34 33 33 32 32 31 30
95 91 87 83 80 76 74 71 68 66 64 62 60 58 56 55 53 52 50 49 48 47 46 45 44 43 42 41 40 39 38 38 37 36 36 35 34 34 33 33 32
100 96 91 87 84 80 77 75 72 69 67 65 63 61 59 58 56 55 53 52 50 49 48 47 46 45 44 43 42 41 40 40 39 38 38 37 36 36 35 34 34
100 96 92 88 84 81 78 75 73 70 68 66 64 62 60 59 57 56 54 53 52 50 49 48 47 46 45 44 43 42 42 41 40 39 39 38 37 37 36 35
100 96 92 88 85 82 79 76 74 71 69 67 65 63 62 60 58 57 55 54 53 52 50 49 48 47 46 45 44 44 43 42 41 40 40 39 38 38 37
100 96 92 89 86 83 80 77 75 72 70 68 66 64 63 61 59 58 57 55 54 53 52 50 49 48 47 46 46 45 44 43 42 42 41 40 39 39
100 96 93 89 86 83 80 78 75 73 71 69 67 65 64 62 60 59 58 56 55 54 53 52 50 49 48 48 47 46 45 44 43 43 42 41 40
100 97 93 90 87 84 81 79 76 74 72 70 68 66 65 63 61 60 59 57 56 55 54 53 52 50 50 49 48 47 46 45 44 44 43 42
100 97 93 90 87 84 82 79 77 75 73 71 69 67 65 64 62 61 60 58 57 56 55 54 52 51 50 50 49 48 47 46 45 45 44
100 97 94 90 88 85 82 80 78 75 73 72 70 68 66 65 63 62 60 59 58 57 56 54 53 52 51 50 50 49 48 47 46 45
100 97 94 91 88 85 83 80 78 76 74 72 70 69 67 66 64 63 61 60 59 58 56 55 54 53 52 51 50 50 49 48 47
100 97 94 91 88 86 83 81 79 77 75 73 71 70 68 66 65 64 62 61 60 58 57 56 55 54 53 52 51 50 50 49
100 97 94 91 89 86 84 82 79 77 75 74 72 70 69 67 66 64 63 62 60 59 58 57 56 55 54 53 52 51 50
100 97 94 92 89 87 84 82 80 78 76 74 73 71 69 68 66 65 64 62 61 60 59 58 57 56 55 54 53 52
100 97 95 92 89 87 85 83 80 79 77 75 73 72 70 69 67 66 64 63 62 61 60 59 58 57 56 55 54
100 98 95 92 90 87 85 83 81 79 77 75 74 72 71 69 68 66 65 64 63 62 60 59 58 57 56 55
100 98 95 92 90 88 85 83 81 80 78 76 74 73 71 70 68 67 66 65 63 62 61 60 59 58 57
100 98 95 93 90 88 86 84 82 80 78 77 75 73 72 70 69 68 67 65 64 63 62 61 60 59
100 98 95 93 90 88 86 84 82 80 79 77 75 74 72 71 70 68 67 66 65 64 63 62 60
100 98 95 93 91 89 87 85 83 81 79 78 76 74 73 72 70 69 68 67 65 64 63 62
100 98 95 93 91 89 87 85 83 81 80 78 76 75 74 72 71 70 68 67 66 65 64
100 98 96 93 91 89 87 85 83 82 80 78 77 75 74 73 71 70 69 68 67 65
100 98 96 94 91 89 87 86 84 82 80 79 77 76 75 73 72 71 69 68 67
100 98 96 94 92 90 88 86 84 82 81 79 78 76 75 74 72 71 70 69
100 98 96 94 92 90 88 86 84 83 81 80 78 77 75 74 73 72 70
100 98 96 94 92 90 88 86 85 83 82 80 79 77 76 75 73 72
100 98 96 94 92 90 88 87 85 84 82 80 79 78 76 75 74
100 98 96 94 92 90 89 87 85 84 82 81 79 78 77 75
100 98 96 94 92 91 89 87 86 84 83 81 80 78 77
100 98 96 94 93 91 89 88 86 84 83 82 80 79
100 98 96 95 93 91 89 88 86 85 83 82 80
100 98 97 95 93 91 90 88 86 85 84 82
100 99 97 95 93 91 90 88 87 85 84
100 99 97 95 93 92 90 88 87 85
100 99 97 95 93 92 90 89 87
100 99 97 95 93 92 90 89
100 99 97 95 94 92 90
100 99 97 95 94 92
100 99 97 95 94
100 99 97 95
100 99 97
100 99
100

unJon
unJon
  • Threads: 16
  • Posts: 4842
Joined: Jul 1, 2018
October 8th, 2018 at 4:22:19 AM permalink
You want to use the SUMIF formula or I prefer to break it into an array formula:

First drag down a colum that goes from 0%, 1%, 2% . . . 100%.

Say that’s in Column A of your current worksheet from A1:A101

Then use in cell B2: SUM(IF(winrates!$A$1:$AO$61=A1,probability!$A$1:$AO$61,0)

Make sure when you finish typing the above you exit the cell with Ctrl+Shift+Enter. That tells Excel it’s an array function and will but funny brackets around the whole thing. {}

The function will search everything in the array of winrates that matches 0% and add up the corresponding probabilities. Then just drag that formula down to B101 to get all the winrates added.

Let me know if unclear.
The race is not always to the swift, nor the battle to the strong; but that is the way to bet.
RS
RS
  • Threads: 62
  • Posts: 8626
Joined: Feb 11, 2014
October 8th, 2018 at 4:51:49 AM permalink
Quote: unJon

You want to use the SUMIF formula or I prefer to break it into an array formula:

First drag down a colum that goes from 0%, 1%, 2% . . . 100%.

Say that’s in Column A of your current worksheet from A1:A101

Then use in cell B2: SUM(IF(winrates!$A$1:$AO$61=A1,probability!$A$1:$AO$61,0)

Make sure when you finish typing the above you exit the cell with Ctrl+Shift+Enter. That tells Excel it’s an array function and will but funny brackets around the whole thing. {}

The function will search everything in the array of winrates that matches 0% and add up the corresponding probabilities. Then just drag that formula down to B101 to get all the winrates added.

Let me know if unclear.


Now I want to delete my question for how stupid it was (kind of). I totally forgot you could SUMIFS over an entire table and not just a row or column. I had actually considered doing that, and I was like, "Nahhh, you can't do that over a TABLE, that's only for columns or rows...." Oh the shame! :'(


Anyway, results are kinda interesting. 50% is at the top...but then 52, 49, 48...then 55%!?


Rank # win% chance to win 1-in-x prob
1 50 0.07962347 12.55911106
2 52 0.056520349 17.69274284
3 49 0.050107229 19.95720013
4 48 0.049635738 20.14677411
5 55 0.047479869 21.06155783
6 53 0.043222618 23.13603489
7 54 0.042880249 23.32075986
8 46 0.041536742 24.07507074
9 47 0.040539721 24.66716562
10 45 0.040300695 24.8134681
11 56 0.037179637 26.89644298
12 44 0.036206521 27.61933424
13 58 0.033020778 30.28396208
14 60 0.032245592 31.01199051
15 43 0.031562271 31.68339777
16 57 0.031043922 32.21242448
17 40 0.02895206 34.53985601
18 42 0.02790553 35.83519083
19 59 0.026447023 37.81143875
20 41 0.018079949 55.30989013
21 62 0.017474465 57.22635717
22 39 0.016815785 59.46793489
23 38 0.014922821 67.0114573
24 61 0.014786417 67.62963431
25 63 0.014264141 70.1058704
26 51 0.012956945 77.17868637
27 64 0.012224101 81.80560811
28 35 0.010356449 96.55819415
29 37 0.010347999 96.63703616
30 65 0.009647586 103.6528697
31 36 0.009036838 110.658175
32 66 0.008082922 123.7176364
33 34 0.007175456 139.3639688
34 67 0.006962133 143.6341392
35 32 0.004213198 237.3494197
36 68 0.004080783 245.0510083
37 70 0.003946425 253.3939016
38 69 0.003320355 301.1726512
39 30 0.003276449 305.2084735
40 33 0.00318794 313.6821823
41 31 0.002527604 395.6316666
42 72 0.002015451 496.1668563
43 71 0.001857628 538.3210123
44 29 0.001645721 607.6365859
45 28 0.001469481 680.5125697
46 75 0.001170038 854.6732054
47 73 0.00109975 909.2975112
48 25 0.000960845 1040.75072
49 74 0.000921701 1084.950481
50 27 0.000914014 1094.075447
51 24 0.000574093 1741.877504
52 77 0.000442732 2258.7037
53 26 0.000378694 2640.650993
54 76 0.000293176 3410.92524
55 78 0.000282025 3545.789567
56 23 0.000281215 3555.992476
57 20 0.000279707 3575.164211
58 80 0.000269897 3705.117734
59 22 0.000185538 5389.741864
60 79 0.000184728 5413.351267
61 81 0.000107477 9304.308242
62 21 9.76666E-05 10238.91296
63 82 6.95253E-05 14383.25502
64 19 6.9471E-05 14394.49227
65 15 4.78484E-05 20899.33505
66 18 4.49033E-05 22270.06241
67 83 4.48491E-05 22297.01282
68 85 3.43624E-05 29101.6038
69 84 3.12468E-05 32003.32403
70 17 2.204E-05 45372.01596
71 86 2.12483E-05 47062.54726
72 16 1.69668E-05 58938.46845
73 14 1.61022E-05 62103.42248
74 87 1.61E-05 62111.76966
75 10 8.39643E-06 119098.2884
76 88 5.34489E-06 187094.6134
77 90 5.00036E-06 199985.5969
78 91 3.88266E-06 257555.2672
79 13 3.67271E-06 272278.709
80 12 3.28275E-06 304622.8035
81 89 1.61057E-06 620899.6439
82 92 1.37219E-06 728759.5209
83 9 1.15412E-06 866458.2872
84 5 9.39174E-07 1064765.793
85 96 4.92122E-07 2032017.998
86 11 4.86596E-07 2055092.291
87 95 4.66881E-07 2141871.258
88 8 4.3588E-07 2294207.507
89 93 2.1781E-07 4591167.926
90 100 4.65216E-08 21495396.1
91 0 4.65214E-08 21495504.75
92 94 3.79973E-08 26317677
93 7 3.79965E-08 26318202.44
94 4 3.76991E-08 26525857.72
95 97 1.95271E-08 51210953.05
96 6 1.65776E-09 603223669.7
97 98 1.00135E-10 9986515235
98 3 9.99305E-11 10006959676
99 2 8.67227E-13 1.1531E+12
100 1 2.79276E-13 3.58069E+12
101 99 2.69556E-14 3.7098E+13



52%
  • Jump to: