For example:
9876543210 = 1023456789
Thanks.
0001234567 for instance?
(I used a Normal approximation, but without much care. This is a very GROSS approximation.)
rolling 10, 10 sided dice with faces from 0 to 9
I would first expand the polynomial
(x^0+x^1+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9)^10
I bet ME can do this in his head.
or
Computed by Wolfram Mathematica
x^90+10 x^89+55 x^88+220 x^87+715 x^86+2002 x^85+5005 x^84+11440 x^83+24310 x^82+48620 x^81+92368 x^80+167860 x^79+293380 x^78+495220 x^77+810040 x^76+1287484 x^75+1992925 x^74+3010150 x^73+4443725 x^72+6420700 x^71+9091270 x^70+12628000 x^69+17223250 x^68+23084500 x^67+30427375 x^66+39466306 x^65+50402935 x^64+63412580 x^63+78629320 x^62+96130540 x^61+115921972 x^60+137924380 x^59+161963065 x^58+187761310 x^57+214938745 x^56+243015388 x^55+271421810 x^54+299515480 x^53+326602870 x^52+351966340 x^51+374894389 x^50+394713550 x^49+410820025 x^48+422709100 x^47+430000450 x^46+432457640 x^45+430000450 x^44+422709100 x^43+410820025 x^42+394713550 x^41+374894389 x^40+351966340 x^39+326602870 x^38+299515480 x^37+271421810 x^36+243015388 x^35+214938745 x^34+187761310 x^33+161963065 x^32+137924380 x^31+115921972 x^30+96130540 x^29+78629320 x^28+63412580 x^27+50402935 x^26+39466306 x^25+30427375 x^24+23084500 x^23+17223250 x^22+12628000 x^21+9091270 x^20+6420700 x^19+4443725 x^18+3010150 x^17+1992925 x^16+1287484 x^15+810040 x^14+495220 x^13+293380 x^12+167860 x^11+92368 x^10+48620 x^9+24310 x^8+11440 x^7+5005 x^6+2002 x^5+715 x^4+220 x^3+55 x^2+10 x+1
Wolfram|Alpha
now the total number ways to roll each sum (the coefficients or the # in front of each x)
can be tabulated, weighted and summed.
examples: 10 x = 10x^1 so 10 ways to get a sum of 1 (so 10 / 10^10 would be that probability. my head is starting to spin. more Valium)
55 x^2 = 55 ways to get a sum of 2 (55/10^10)
the +1 = 1x^0
let us know when you have an answer
and see how close it is to the one that used a Normal approximation
sum | freq | prob | prob*prob |
---|---|---|---|
0 | 1 | 1E-10 | 1E-20 |
1 | 10 | 0.000000001 | 1E-18 |
2 | 55 | 5.5E-09 | 3.025E-17 |
3 | 220 | 0.000000022 | 4.84E-16 |
4 | 715 | 7.15E-08 | 5.11225E-15 |
5 | 2002 | 2.002E-07 | 4.008E-14 |
6 | 5005 | 5.005E-07 | 2.505E-13 |
7 | 11440 | 0.000001144 | 1.30874E-12 |
8 | 24310 | 0.000002431 | 5.90976E-12 |
9 | 48620 | 0.000004862 | 2.3639E-11 |
10 | 92368 | 9.2368E-06 | 8.53185E-11 |
11 | 167860 | 0.000016786 | 2.8177E-10 |
12 | 293380 | 0.000029338 | 8.60718E-10 |
13 | 495220 | 0.000049522 | 2.45243E-09 |
14 | 810040 | 0.000081004 | 6.56165E-09 |
15 | 1287484 | 0.000128748 | 1.65762E-08 |
16 | 1992925 | 0.000199293 | 3.97175E-08 |
17 | 3010150 | 0.000301015 | 9.061E-08 |
18 | 4443725 | 0.000444373 | 1.97467E-07 |
19 | 6420700 | 0.00064207 | 4.12254E-07 |
20 | 9091270 | 0.000909127 | 8.26512E-07 |
21 | 12628000 | 0.0012628 | 1.59466E-06 |
22 | 17223250 | 0.001722325 | 2.9664E-06 |
23 | 23084500 | 0.00230845 | 5.32894E-06 |
24 | 30427375 | 0.003042738 | 9.25825E-06 |
25 | 39466306 | 0.003946631 | 1.55759E-05 |
26 | 50402935 | 0.005040294 | 2.54046E-05 |
27 | 63412580 | 0.006341258 | 4.02116E-05 |
28 | 78629320 | 0.007862932 | 6.18257E-05 |
29 | 96130540 | 0.009613054 | 9.24108E-05 |
30 | 115921972 | 0.011592197 | 0.000134379 |
31 | 137924380 | 0.013792438 | 0.000190231 |
32 | 161963065 | 0.016196307 | 0.00026232 |
33 | 187761310 | 0.018776131 | 0.000352543 |
34 | 214938745 | 0.021493875 | 0.000461987 |
35 | 243015388 | 0.024301539 | 0.000590565 |
36 | 271421810 | 0.027142181 | 0.000736698 |
37 | 299515480 | 0.029951548 | 0.000897095 |
38 | 326602870 | 0.032660287 | 0.001066694 |
39 | 351966340 | 0.035196634 | 0.001238803 |
40 | 374894389 | 0.037489439 | 0.001405458 |
41 | 394713550 | 0.039471355 | 0.001557988 |
42 | 410820025 | 0.041082003 | 0.001687731 |
43 | 422709100 | 0.04227091 | 0.00178683 |
44 | 430000450 | 0.043000045 | 0.001849004 |
45 | 432457640 | 0.043245764 | 0.001870196 |
46 | 430000450 | 0.043000045 | 0.001849004 |
47 | 422709100 | 0.04227091 | 0.00178683 |
48 | 410820025 | 0.041082003 | 0.001687731 |
49 | 394713550 | 0.039471355 | 0.001557988 |
50 | 374894389 | 0.037489439 | 0.001405458 |
51 | 351966340 | 0.035196634 | 0.001238803 |
52 | 326602870 | 0.032660287 | 0.001066694 |
53 | 299515480 | 0.029951548 | 0.000897095 |
54 | 271421810 | 0.027142181 | 0.000736698 |
55 | 243015388 | 0.024301539 | 0.000590565 |
56 | 214938745 | 0.021493875 | 0.000461987 |
57 | 187761310 | 0.018776131 | 0.000352543 |
58 | 161963065 | 0.016196307 | 0.00026232 |
59 | 137924380 | 0.013792438 | 0.000190231 |
60 | 115921972 | 0.011592197 | 0.000134379 |
61 | 96130540 | 0.009613054 | 9.24108E-05 |
62 | 78629320 | 0.007862932 | 6.18257E-05 |
63 | 63412580 | 0.006341258 | 4.02116E-05 |
64 | 50402935 | 0.005040294 | 2.54046E-05 |
65 | 39466306 | 0.003946631 | 1.55759E-05 |
66 | 30427375 | 0.003042738 | 9.25825E-06 |
67 | 23084500 | 0.00230845 | 5.32894E-06 |
68 | 17223250 | 0.001722325 | 2.9664E-06 |
69 | 12628000 | 0.0012628 | 1.59466E-06 |
70 | 9091270 | 0.000909127 | 8.26512E-07 |
71 | 6420700 | 0.00064207 | 4.12254E-07 |
72 | 4443725 | 0.000444373 | 1.97467E-07 |
73 | 3010150 | 0.000301015 | 9.061E-08 |
74 | 1992925 | 0.000199293 | 3.97175E-08 |
75 | 1287484 | 0.000128748 | 1.65762E-08 |
76 | 810040 | 0.000081004 | 6.56165E-09 |
77 | 495220 | 0.000049522 | 2.45243E-09 |
78 | 293380 | 0.000029338 | 8.60718E-10 |
79 | 167860 | 0.000016786 | 2.8177E-10 |
80 | 92368 | 9.2368E-06 | 8.53185E-11 |
81 | 48620 | 0.000004862 | 2.3639E-11 |
82 | 24310 | 0.000002431 | 5.90976E-12 |
83 | 11440 | 0.000001144 | 1.30874E-12 |
84 | 5005 | 5.005E-07 | 2.505E-13 |
85 | 2002 | 2.002E-07 | 4.008E-14 |
86 | 715 | 7.15E-08 | 5.11225E-15 |
87 | 220 | 0.000000022 | 4.84E-16 |
88 | 55 | 5.5E-09 | 3.025E-17 |
89 | 10 | 0.000000001 | 1E-18 |
90 | 1 | 1E-10 | 1E-20 |
sum | 10,000,000,000 | total | 0.030819189 |
a quick 100k sim in Excel showed 3084 were the same sum
also for other # of dice or length of the random digit
2 | 0.067 |
3 | 0.055251 |
4 | 0.0481603 |
5 | 0.043245764 |
6 | 0.03958117 |
7 | 0.036713313 |
8 | 0.034390002 |
9 | 0.032458257 |
10 | 0.030819189 |
is this for a game you are thinking of developing?
whys the question?
you can also start with a smaller number of dice, maybe 3
(x^0+x^1+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9)^3 =
x^27+3 x^26+6 x^25+10 x^24+15 x^23+21 x^22+28 x^21+36 x^20+45 x^19+55 x^18+63 x^17+69 x^16+73 x^15+75 x^14+75 x^13+73 x^12+69 x^11+63 x^10+55 x^9+45 x^8+36 x^7+28 x^6+21 x^5+15 x^4+10 x^3+6 x^2+3 x+1
and the partition formulas may be a short cut to use, maybe not
Sally
Ok, the reason I originally asked was to see what the odds two telephone numbers adding up to the same amount. So with that restriction, the first number would have to start with at least a 2 (I don't think any area codes start with the digit 1).
The following table shows the number of ways to sum each total with 1 to 10 digits. Except for the case of one digit, note how the total in any grid is the sum of the ten totals one column to the left, starting in the same row, and going up 9 more. If this causes you to go above the table, just assume zeros for the other numbers. For example, the number of ways to roll 50 with 5 dice is the sum of the ways to roll 41 to 50 with 4 dice. This should be intuitive, if you think about it.
Total | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 |
3 | 1 | 4 | 10 | 20 | 35 | 56 | 84 | 120 | 165 | 220 |
4 | 1 | 5 | 15 | 35 | 70 | 126 | 210 | 330 | 495 | 715 |
5 | 1 | 6 | 21 | 56 | 126 | 252 | 462 | 792 | 1287 | 2002 |
6 | 1 | 7 | 28 | 84 | 210 | 462 | 924 | 1716 | 3003 | 5005 |
7 | 1 | 8 | 36 | 120 | 330 | 792 | 1716 | 3432 | 6435 | 11440 |
8 | 1 | 9 | 45 | 165 | 495 | 1287 | 3003 | 6435 | 12870 | 24310 |
9 | 1 | 10 | 55 | 220 | 715 | 2002 | 5005 | 11440 | 24310 | 48620 |
10 | 9 | 63 | 282 | 996 | 2997 | 8001 | 19440 | 43749 | 92368 | |
11 | 8 | 69 | 348 | 1340 | 4332 | 12327 | 31760 | 75501 | 167860 | |
12 | 7 | 73 | 415 | 1745 | 6062 | 18368 | 50100 | 125565 | 293380 | |
13 | 6 | 75 | 480 | 2205 | 8232 | 26544 | 76560 | 202005 | 495220 | |
14 | 5 | 75 | 540 | 2710 | 10872 | 37290 | 113640 | 315315 | 810040 | |
15 | 4 | 73 | 592 | 3246 | 13992 | 51030 | 164208 | 478731 | 1287484 | |
16 | 3 | 69 | 633 | 3795 | 17577 | 68145 | 231429 | 708444 | 1992925 | |
17 | 2 | 63 | 660 | 4335 | 21582 | 88935 | 318648 | 1023660 | 3010150 | |
18 | 1 | 55 | 670 | 4840 | 25927 | 113575 | 429220 | 1446445 | 4443725 | |
19 | 0 | 45 | 660 | 5280 | 30492 | 142065 | 566280 | 2001285 | 6420700 | |
20 | 0 | 36 | 633 | 5631 | 35127 | 174195 | 732474 | 2714319 | 9091270 | |
21 | 0 | 28 | 592 | 5875 | 39662 | 209525 | 929672 | 3612231 | 12628000 | |
22 | 0 | 21 | 540 | 6000 | 43917 | 247380 | 1158684 | 4720815 | 17223250 | |
23 | 0 | 15 | 480 | 6000 | 47712 | 286860 | 1419000 | 6063255 | 23084500 | |
24 | 0 | 10 | 415 | 5875 | 50877 | 326865 | 1708575 | 7658190 | 30427375 | |
25 | 0 | 6 | 348 | 5631 | 53262 | 366135 | 2023680 | 9517662 | 39466306 | |
26 | 0 | 3 | 282 | 5280 | 54747 | 403305 | 2358840 | 11645073 | 50402935 | |
27 | 0 | 1 | 220 | 4840 | 55252 | 436975 | 2706880 | 14033305 | 63412580 | |
28 | 0 | 0 | 165 | 4335 | 54747 | 465795 | 3059100 | 16663185 | 78629320 | |
29 | 0 | 0 | 120 | 3795 | 53262 | 488565 | 3405600 | 19502505 | 96130540 | |
30 | 0 | 0 | 84 | 3246 | 50877 | 504315 | 3735720 | 22505751 | 115921972 | |
31 | 0 | 0 | 56 | 2710 | 47712 | 512365 | 4038560 | 25614639 | 137924380 | |
32 | 0 | 0 | 35 | 2205 | 43917 | 512365 | 4303545 | 28759500 | 161963065 | |
33 | 0 | 0 | 20 | 1745 | 39662 | 504315 | 4521000 | 31861500 | 187761310 | |
34 | 0 | 0 | 10 | 1340 | 35127 | 488565 | 4682700 | 34835625 | 214938745 | |
35 | 0 | 0 | 4 | 996 | 30492 | 465795 | 4782360 | 37594305 | 243015388 | |
36 | 0 | 0 | 1 | 715 | 25927 | 436975 | 4816030 | 40051495 | 271421810 | |
37 | 0 | 0 | 0 | 495 | 21582 | 403305 | 4782360 | 42126975 | 299515480 | |
38 | 0 | 0 | 0 | 330 | 17577 | 366135 | 4682700 | 43750575 | 326602870 | |
39 | 0 | 0 | 0 | 210 | 13992 | 326865 | 4521000 | 44865975 | 351966340 | |
40 | 0 | 0 | 0 | 126 | 10872 | 286860 | 4303545 | 45433800 | 374894389 | |
41 | 0 | 0 | 0 | 70 | 8232 | 247380 | 4038560 | 45433800 | 394713550 | |
42 | 0 | 0 | 0 | 35 | 6062 | 209525 | 3735720 | 44865975 | 410820025 | |
43 | 0 | 0 | 0 | 15 | 4332 | 174195 | 3405600 | 43750575 | 422709100 | |
44 | 0 | 0 | 0 | 5 | 2997 | 142065 | 3059100 | 42126975 | 430000450 | |
45 | 0 | 0 | 0 | 1 | 2002 | 113575 | 2706880 | 40051495 | 432457640 | |
46 | 0 | 0 | 0 | 0 | 1287 | 88935 | 2358840 | 37594305 | 430000450 | |
47 | 0 | 0 | 0 | 0 | 792 | 68145 | 2023680 | 34835625 | 422709100 | |
48 | 0 | 0 | 0 | 0 | 462 | 51030 | 1708575 | 31861500 | 410820025 | |
49 | 0 | 0 | 0 | 0 | 252 | 37290 | 1419000 | 28759500 | 394713550 | |
50 | 0 | 0 | 0 | 0 | 126 | 26544 | 1158684 | 25614639 | 374894389 | |
51 | 0 | 0 | 0 | 0 | 56 | 18368 | 929672 | 22505751 | 351966340 | |
52 | 0 | 0 | 0 | 0 | 21 | 12327 | 732474 | 19502505 | 326602870 | |
53 | 0 | 0 | 0 | 0 | 6 | 8001 | 566280 | 16663185 | 299515480 | |
54 | 0 | 0 | 0 | 0 | 1 | 5005 | 429220 | 14033305 | 271421810 | |
55 | 0 | 0 | 0 | 0 | 0 | 3003 | 318648 | 11645073 | 243015388 | |
56 | 0 | 0 | 0 | 0 | 0 | 1716 | 231429 | 9517662 | 214938745 | |
57 | 0 | 0 | 0 | 0 | 0 | 924 | 164208 | 7658190 | 187761310 | |
58 | 0 | 0 | 0 | 0 | 0 | 462 | 113640 | 6063255 | 161963065 | |
59 | 0 | 0 | 0 | 0 | 0 | 210 | 76560 | 4720815 | 137924380 | |
60 | 0 | 0 | 0 | 0 | 0 | 84 | 50100 | 3612231 | 115921972 | |
61 | 0 | 0 | 0 | 0 | 0 | 28 | 31760 | 2714319 | 96130540 | |
62 | 0 | 0 | 0 | 0 | 0 | 7 | 19440 | 2001285 | 78629320 | |
63 | 0 | 0 | 0 | 0 | 0 | 1 | 11440 | 1446445 | 63412580 | |
64 | 0 | 0 | 0 | 0 | 0 | 0 | 6435 | 1023660 | 50402935 | |
65 | 0 | 0 | 0 | 0 | 0 | 0 | 3432 | 708444 | 39466306 | |
66 | 0 | 0 | 0 | 0 | 0 | 0 | 1716 | 478731 | 30427375 | |
67 | 0 | 0 | 0 | 0 | 0 | 0 | 792 | 315315 | 23084500 | |
68 | 0 | 0 | 0 | 0 | 0 | 0 | 330 | 202005 | 17223250 | |
69 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 125565 | 12628000 | |
70 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 75501 | 9091270 | |
71 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 43749 | 6420700 | |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 24310 | 4443725 | |
73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12870 | 3010150 | |
74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6435 | 1992925 | |
75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3003 | 1287484 | |
76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1287 | 810040 | |
77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 495 | 495220 | |
78 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 165 | 293380 | |
79 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 | 167860 | |
80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 92368 | |
81 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 48620 | |
82 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24310 | |
83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11440 | |
84 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5005 | |
85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2002 | |
86 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 715 | |
87 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 220 | |
88 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55 | |
89 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | |
90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
With the combinations for 10 dice you can get the probability for easily, as follows.
Total | Combinations | Pr (one number) | Pr (two numbers) |
---|---|---|---|
0 | 1 | 0.0000000001 | 0.0000000000 |
1 | 10 | 0.0000000010 | 0.0000000000 |
2 | 55 | 0.0000000055 | 0.0000000000 |
3 | 220 | 0.0000000220 | 0.0000000000 |
4 | 715 | 0.0000000715 | 0.0000000000 |
5 | 2002 | 0.0000002002 | 0.0000000000 |
6 | 5005 | 0.0000005005 | 0.0000000000 |
7 | 11440 | 0.0000011440 | 0.0000000000 |
8 | 24310 | 0.0000024310 | 0.0000000000 |
9 | 48620 | 0.0000048620 | 0.0000000000 |
10 | 92368 | 0.0000092368 | 0.0000000001 |
11 | 167860 | 0.0000167860 | 0.0000000003 |
12 | 293380 | 0.0000293380 | 0.0000000009 |
13 | 495220 | 0.0000495220 | 0.0000000025 |
14 | 810040 | 0.0000810040 | 0.0000000066 |
15 | 1287484 | 0.0001287484 | 0.0000000166 |
16 | 1992925 | 0.0001992925 | 0.0000000397 |
17 | 3010150 | 0.0003010150 | 0.0000000906 |
18 | 4443725 | 0.0004443725 | 0.0000001975 |
19 | 6420700 | 0.0006420700 | 0.0000004123 |
20 | 9091270 | 0.0009091270 | 0.0000008265 |
21 | 12628000 | 0.0012628000 | 0.0000015947 |
22 | 17223250 | 0.0017223250 | 0.0000029664 |
23 | 23084500 | 0.0023084500 | 0.0000053289 |
24 | 30427375 | 0.0030427375 | 0.0000092583 |
25 | 39466306 | 0.0039466306 | 0.0000155759 |
26 | 50402935 | 0.0050402935 | 0.0000254046 |
27 | 63412580 | 0.0063412580 | 0.0000402116 |
28 | 78629320 | 0.0078629320 | 0.0000618257 |
29 | 96130540 | 0.0096130540 | 0.0000924108 |
30 | 115921972 | 0.0115921972 | 0.0001343790 |
31 | 137924380 | 0.0137924380 | 0.0001902313 |
32 | 161963065 | 0.0161963065 | 0.0002623203 |
33 | 187761310 | 0.0187761310 | 0.0003525431 |
34 | 214938745 | 0.0214938745 | 0.0004619866 |
35 | 243015388 | 0.0243015388 | 0.0005905648 |
36 | 271421810 | 0.0271421810 | 0.0007366980 |
37 | 299515480 | 0.0299515480 | 0.0008970952 |
38 | 326602870 | 0.0326602870 | 0.0010666943 |
39 | 351966340 | 0.0351966340 | 0.0012388030 |
40 | 374894389 | 0.0374894389 | 0.0014054580 |
41 | 394713550 | 0.0394713550 | 0.0015579879 |
42 | 410820025 | 0.0410820025 | 0.0016877309 |
43 | 422709100 | 0.0422709100 | 0.0017868298 |
44 | 430000450 | 0.0430000450 | 0.0018490039 |
45 | 432457640 | 0.0432457640 | 0.0018701961 |
46 | 430000450 | 0.0430000450 | 0.0018490039 |
47 | 422709100 | 0.0422709100 | 0.0017868298 |
48 | 410820025 | 0.0410820025 | 0.0016877309 |
49 | 394713550 | 0.0394713550 | 0.0015579879 |
50 | 374894389 | 0.0374894389 | 0.0014054580 |
51 | 351966340 | 0.0351966340 | 0.0012388030 |
52 | 326602870 | 0.0326602870 | 0.0010666943 |
53 | 299515480 | 0.0299515480 | 0.0008970952 |
54 | 271421810 | 0.0271421810 | 0.0007366980 |
55 | 243015388 | 0.0243015388 | 0.0005905648 |
56 | 214938745 | 0.0214938745 | 0.0004619866 |
57 | 187761310 | 0.0187761310 | 0.0003525431 |
58 | 161963065 | 0.0161963065 | 0.0002623203 |
59 | 137924380 | 0.0137924380 | 0.0001902313 |
60 | 115921972 | 0.0115921972 | 0.0001343790 |
61 | 96130540 | 0.0096130540 | 0.0000924108 |
62 | 78629320 | 0.0078629320 | 0.0000618257 |
63 | 63412580 | 0.0063412580 | 0.0000402116 |
64 | 50402935 | 0.0050402935 | 0.0000254046 |
65 | 39466306 | 0.0039466306 | 0.0000155759 |
66 | 30427375 | 0.0030427375 | 0.0000092583 |
67 | 23084500 | 0.0023084500 | 0.0000053289 |
68 | 17223250 | 0.0017223250 | 0.0000029664 |
69 | 12628000 | 0.0012628000 | 0.0000015947 |
70 | 9091270 | 0.0009091270 | 0.0000008265 |
71 | 6420700 | 0.0006420700 | 0.0000004123 |
72 | 4443725 | 0.0004443725 | 0.0000001975 |
73 | 3010150 | 0.0003010150 | 0.0000000906 |
74 | 1992925 | 0.0001992925 | 0.0000000397 |
75 | 1287484 | 0.0001287484 | 0.0000000166 |
76 | 810040 | 0.0000810040 | 0.0000000066 |
77 | 495220 | 0.0000495220 | 0.0000000025 |
78 | 293380 | 0.0000293380 | 0.0000000009 |
79 | 167860 | 0.0000167860 | 0.0000000003 |
80 | 92368 | 0.0000092368 | 0.0000000001 |
81 | 48620 | 0.0000048620 | 0.0000000000 |
82 | 24310 | 0.0000024310 | 0.0000000000 |
83 | 11440 | 0.0000011440 | 0.0000000000 |
84 | 5005 | 0.0000005005 | 0.0000000000 |
85 | 2002 | 0.0000002002 | 0.0000000000 |
86 | 715 | 0.0000000715 | 0.0000000000 |
87 | 220 | 0.0000000220 | 0.0000000000 |
88 | 55 | 0.0000000055 | 0.0000000000 |
89 | 10 | 0.0000000010 | 0.0000000000 |
90 | 1 | 0.0000000001 | 0.0000000000 |
Total | 10000000000 | 1.0000000000 | 0.0308191892 |
The answer is in the bottom right cell, 3.08%.
Quote: WizardHere is a nifty way to solve this problem. All you need is a blank spreadsheet.
The following table shows the number of ways to sum each total with 1 to 10 digits. Except for the case of one digit, note how the total in any grid is the sum of the ten totals one column to the left, starting in the same row, and going up 9 more. If this causes you to go above the table, just assume zeros for the other numbers. For example, the number of ways to roll 50 with 5 dice is the sum of the ways to roll 41 to 50 with 4 dice. This should be intuitive, if you think about it.
Total 1 2 3 4 5 6 7 8 9 10 0 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 2 1 3 6 10 15 21 28 36 45 55 3 1 4 10 20 35 56 84 120 165 220 4 1 5 15 35 70 126 210 330 495 715 5 1 6 21 56 126 252 462 792 1287 2002 6 1 7 28 84 210 462 924 1716 3003 5005 7 1 8 36 120 330 792 1716 3432 6435 11440 8 1 9 45 165 495 1287 3003 6435 12870 24310 9 1 10 55 220 715 2002 5005 11440 24310 48620 10 9 63 282 996 2997 8001 19440 43749 92368 11 8 69 348 1340 4332 12327 31760 75501 167860 12 7 73 415 1745 6062 18368 50100 125565 293380 13 6 75 480 2205 8232 26544 76560 202005 495220 14 5 75 540 2710 10872 37290 113640 315315 810040 15 4 73 592 3246 13992 51030 164208 478731 1287484 16 3 69 633 3795 17577 68145 231429 708444 1992925 17 2 63 660 4335 21582 88935 318648 1023660 3010150 18 1 55 670 4840 25927 113575 429220 1446445 4443725 19 0 45 660 5280 30492 142065 566280 2001285 6420700 20 0 36 633 5631 35127 174195 732474 2714319 9091270 21 0 28 592 5875 39662 209525 929672 3612231 12628000 22 0 21 540 6000 43917 247380 1158684 4720815 17223250 23 0 15 480 6000 47712 286860 1419000 6063255 23084500 24 0 10 415 5875 50877 326865 1708575 7658190 30427375 25 0 6 348 5631 53262 366135 2023680 9517662 39466306 26 0 3 282 5280 54747 403305 2358840 11645073 50402935 27 0 1 220 4840 55252 436975 2706880 14033305 63412580 28 0 0 165 4335 54747 465795 3059100 16663185 78629320 29 0 0 120 3795 53262 488565 3405600 19502505 96130540 30 0 0 84 3246 50877 504315 3735720 22505751 115921972 31 0 0 56 2710 47712 512365 4038560 25614639 137924380 32 0 0 35 2205 43917 512365 4303545 28759500 161963065 33 0 0 20 1745 39662 504315 4521000 31861500 187761310 34 0 0 10 1340 35127 488565 4682700 34835625 214938745 35 0 0 4 996 30492 465795 4782360 37594305 243015388 36 0 0 1 715 25927 436975 4816030 40051495 271421810 37 0 0 0 495 21582 403305 4782360 42126975 299515480 38 0 0 0 330 17577 366135 4682700 43750575 326602870 39 0 0 0 210 13992 326865 4521000 44865975 351966340 40 0 0 0 126 10872 286860 4303545 45433800 374894389 41 0 0 0 70 8232 247380 4038560 45433800 394713550 42 0 0 0 35 6062 209525 3735720 44865975 410820025 43 0 0 0 15 4332 174195 3405600 43750575 422709100 44 0 0 0 5 2997 142065 3059100 42126975 430000450 45 0 0 0 1 2002 113575 2706880 40051495 432457640 46 0 0 0 0 1287 88935 2358840 37594305 430000450 47 0 0 0 0 792 68145 2023680 34835625 422709100 48 0 0 0 0 462 51030 1708575 31861500 410820025 49 0 0 0 0 252 37290 1419000 28759500 394713550 50 0 0 0 0 126 26544 1158684 25614639 374894389 51 0 0 0 0 56 18368 929672 22505751 351966340 52 0 0 0 0 21 12327 732474 19502505 326602870 53 0 0 0 0 6 8001 566280 16663185 299515480 54 0 0 0 0 1 5005 429220 14033305 271421810 55 0 0 0 0 0 3003 318648 11645073 243015388 56 0 0 0 0 0 1716 231429 9517662 214938745 57 0 0 0 0 0 924 164208 7658190 187761310 58 0 0 0 0 0 462 113640 6063255 161963065 59 0 0 0 0 0 210 76560 4720815 137924380 60 0 0 0 0 0 84 50100 3612231 115921972 61 0 0 0 0 0 28 31760 2714319 96130540 62 0 0 0 0 0 7 19440 2001285 78629320 63 0 0 0 0 0 1 11440 1446445 63412580 64 0 0 0 0 0 0 6435 1023660 50402935 65 0 0 0 0 0 0 3432 708444 39466306 66 0 0 0 0 0 0 1716 478731 30427375 67 0 0 0 0 0 0 792 315315 23084500 68 0 0 0 0 0 0 330 202005 17223250 69 0 0 0 0 0 0 120 125565 12628000 70 0 0 0 0 0 0 36 75501 9091270 71 0 0 0 0 0 0 8 43749 6420700 72 0 0 0 0 0 0 1 24310 4443725 73 0 0 0 0 0 0 0 12870 3010150 74 0 0 0 0 0 0 0 6435 1992925 75 0 0 0 0 0 0 0 3003 1287484 76 0 0 0 0 0 0 0 1287 810040 77 0 0 0 0 0 0 0 495 495220 78 0 0 0 0 0 0 0 165 293380 79 0 0 0 0 0 0 0 45 167860 80 0 0 0 0 0 0 0 9 92368 81 0 0 0 0 0 0 0 1 48620 82 0 0 0 0 0 0 0 0 24310 83 0 0 0 0 0 0 0 0 11440 84 0 0 0 0 0 0 0 0 5005 85 0 0 0 0 0 0 0 0 2002 86 0 0 0 0 0 0 0 0 715 87 0 0 0 0 0 0 0 0 220 88 0 0 0 0 0 0 0 0 55 89 0 0 0 0 0 0 0 0 10 90 0 0 0 0 0 0 0 0 1
With the combinations for 10 dice you can get the probability for easily, as follows.
Total Combinations Pr (one number) Pr (two numbers) 0 1 0.0000000001 0.0000000000 1 10 0.0000000010 0.0000000000 2 55 0.0000000055 0.0000000000 3 220 0.0000000220 0.0000000000 4 715 0.0000000715 0.0000000000 5 2002 0.0000002002 0.0000000000 6 5005 0.0000005005 0.0000000000 7 11440 0.0000011440 0.0000000000 8 24310 0.0000024310 0.0000000000 9 48620 0.0000048620 0.0000000000 10 92368 0.0000092368 0.0000000001 11 167860 0.0000167860 0.0000000003 12 293380 0.0000293380 0.0000000009 13 495220 0.0000495220 0.0000000025 14 810040 0.0000810040 0.0000000066 15 1287484 0.0001287484 0.0000000166 16 1992925 0.0001992925 0.0000000397 17 3010150 0.0003010150 0.0000000906 18 4443725 0.0004443725 0.0000001975 19 6420700 0.0006420700 0.0000004123 20 9091270 0.0009091270 0.0000008265 21 12628000 0.0012628000 0.0000015947 22 17223250 0.0017223250 0.0000029664 23 23084500 0.0023084500 0.0000053289 24 30427375 0.0030427375 0.0000092583 25 39466306 0.0039466306 0.0000155759 26 50402935 0.0050402935 0.0000254046 27 63412580 0.0063412580 0.0000402116 28 78629320 0.0078629320 0.0000618257 29 96130540 0.0096130540 0.0000924108 30 115921972 0.0115921972 0.0001343790 31 137924380 0.0137924380 0.0001902313 32 161963065 0.0161963065 0.0002623203 33 187761310 0.0187761310 0.0003525431 34 214938745 0.0214938745 0.0004619866 35 243015388 0.0243015388 0.0005905648 36 271421810 0.0271421810 0.0007366980 37 299515480 0.0299515480 0.0008970952 38 326602870 0.0326602870 0.0010666943 39 351966340 0.0351966340 0.0012388030 40 374894389 0.0374894389 0.0014054580 41 394713550 0.0394713550 0.0015579879 42 410820025 0.0410820025 0.0016877309 43 422709100 0.0422709100 0.0017868298 44 430000450 0.0430000450 0.0018490039 45 432457640 0.0432457640 0.0018701961 46 430000450 0.0430000450 0.0018490039 47 422709100 0.0422709100 0.0017868298 48 410820025 0.0410820025 0.0016877309 49 394713550 0.0394713550 0.0015579879 50 374894389 0.0374894389 0.0014054580 51 351966340 0.0351966340 0.0012388030 52 326602870 0.0326602870 0.0010666943 53 299515480 0.0299515480 0.0008970952 54 271421810 0.0271421810 0.0007366980 55 243015388 0.0243015388 0.0005905648 56 214938745 0.0214938745 0.0004619866 57 187761310 0.0187761310 0.0003525431 58 161963065 0.0161963065 0.0002623203 59 137924380 0.0137924380 0.0001902313 60 115921972 0.0115921972 0.0001343790 61 96130540 0.0096130540 0.0000924108 62 78629320 0.0078629320 0.0000618257 63 63412580 0.0063412580 0.0000402116 64 50402935 0.0050402935 0.0000254046 65 39466306 0.0039466306 0.0000155759 66 30427375 0.0030427375 0.0000092583 67 23084500 0.0023084500 0.0000053289 68 17223250 0.0017223250 0.0000029664 69 12628000 0.0012628000 0.0000015947 70 9091270 0.0009091270 0.0000008265 71 6420700 0.0006420700 0.0000004123 72 4443725 0.0004443725 0.0000001975 73 3010150 0.0003010150 0.0000000906 74 1992925 0.0001992925 0.0000000397 75 1287484 0.0001287484 0.0000000166 76 810040 0.0000810040 0.0000000066 77 495220 0.0000495220 0.0000000025 78 293380 0.0000293380 0.0000000009 79 167860 0.0000167860 0.0000000003 80 92368 0.0000092368 0.0000000001 81 48620 0.0000048620 0.0000000000 82 24310 0.0000024310 0.0000000000 83 11440 0.0000011440 0.0000000000 84 5005 0.0000005005 0.0000000000 85 2002 0.0000002002 0.0000000000 86 715 0.0000000715 0.0000000000 87 220 0.0000000220 0.0000000000 88 55 0.0000000055 0.0000000000 89 10 0.0000000010 0.0000000000 90 1 0.0000000001 0.0000000000 Total 10000000000 1.0000000000 0.0308191892
The answer is in the bottom right cell, 3.08%.
This is an OT question but pertains to formatting. The thought of typing all the dat code needed to do these tables makes my head hurt, and for you, this is a small couple of tables. Do you have some intermediate program that you cut-and-paste this kind of thing from that carries over the formatting in code compatible to this site? Or are you hand-entering each row and associated formatting code?
Quote: beachbumbabs
This is an OT question but pertains to formatting. The thought of typing all the dat code needed to do these tables makes my head hurt, and for you, this is a small couple of tables. Do you have some intermediate program that you cut-and-paste this kind of thing from that carries over the formatting in code compatible to this site? Or are you hand-entering each row and associated formatting code?
I use my own. Feel free to use it. It just works with tab delimited text.
http://miplet.net/table/index.php
Quote: beachbumbabsThis is an OT question but pertains to formatting. The thought of typing all the dat code needed to do these tables makes my head hurt, and for you, this is a small couple of tables. Do you have some intermediate program that you cut-and-paste this kind of thing from that carries over the formatting in code compatible to this site? Or are you hand-entering each row and associated formatting code?
miplet's script is much easier, but when I've done it I usually insert a column between each data point and can copy/paste [/dat][dat] into the new column, then copy the entire block.
Quote: mipletI use my own. Feel free to use it. It just works with tab delimited text.
http://miplet.net/table/index.php
Oh, SWEET!! Thanks, miplet! :D