July 17th, 2015 at 2:55:48 AM
permalink
Hi
I was wondering the odds of the same column coming in 9 times in a row. And also the calculation to work out the odds of it happening x times in a row
Many thanks
I was wondering the odds of the same column coming in 9 times in a row. And also the calculation to work out the odds of it happening x times in a row
Many thanks
July 17th, 2015 at 3:28:05 AM
permalink
Some game that has columns, eh? I'm guessing:
Possibility #1. You were burned by 9 columns in a row?
Possibility #2. You are thinking about doing the Martingale?
Possibility #1. You were burned by 9 columns in a row?
Possibility #2. You are thinking about doing the Martingale?
the next time Dame Fortune toys with your heart, your soul and your wallet, raise your glass and praise her thus: “Thanks for nothing, you cold-hearted, evil, damnable, nefarious, low-life, malicious monster from Hell!” She is, after all, stone deaf. ... Arnold Snyder
July 17th, 2015 at 4:21:38 AM
permalink
Just curious is all
July 17th, 2015 at 5:09:25 AM
permalink
Quote: alexroach1992Hi
I was wondering the odds of the same column coming in 9 times in a row. And also the calculation to work out the odds of it happening x times in a row
Many thanks
Assuming you're talking about roulette.
Roughly 1/39, right? Or really, 12/38 instead of 1/3, for 00 roulette, so 6/199. Where n=9.
So .315789 to the 9th is .000031, or 1 chance in 32019.99
Unless I did it wrong. Which I'm sure someone will correct if I did.
If the House lost every hand, they wouldn't deal the game.
July 17th, 2015 at 7:10:35 AM
permalink
Quote: beachbumbabsAssuming you're talking about roulette.
Roughly 1/39, right? Or really, 12/38 instead of 1/3, for 00 roulette, so 6/199. Where n=9.
So .315789 to the 9th is .000031, or 1 chance in 32019.99
Unless I did it wrong. Which I'm sure someone will correct if I did.
No, that's right - for a column to come up N times in a row, it's (12/38)N for a double-zero wheel, or (12/37)N for a single-zero.
For that matter, here's a formula that covers any particular single bet: if X numbers win on that bet (e.g. 18 for red, 12 for a column, 4 for the 1-2-4-5 block), the probability of it winning N times in a row on a double-zero wheel is (X/38)N.
What is probably more important to the people who ask this sort of thing is is, the probability of it not happening in the next N spins is (1 - (X/38)N).
What is probably even more important than that, but not enough people seem to realize this, is, the probability of a bet not winning N times in a row given that it has already won (N - K) times in a row is 1 - (X/38)K. For example, if black has come up 9 times in a row, the probability of it not coming up a tenth time in a row is 1 - (18/38)10-9 = 10/19. Before anyone reads this and thinks they have found some new advantage play for roulette, remember that "black not winning" includes the spins where green wins as well as the ones where red wins.