Thread Rating:
the expected frequency of won bets on 1 number of a European Roulette Wheel is p=1/37.
In the long run, you should get this result. (e.g. you win 1000 out of 37000 spins.
What are the deviations after x spins? It would be great if someone could tell me how I can calculate this?
Thank you very much,
Quote: masterjHello all,
the expected frequency of won bets on 1 number of a European Roulette Wheel is p=1/37.
In the long run, you should get this result. (e.g. you win 1000 out of 37000 spins.
What are the deviations after x spins? It would be great if someone could tell me how I can calculate this?
Thank you very much,
Well, statistics isn't my strong suit, but I think standard deviation is calculated like this:
SD = square root of variance
Oh, you want more?
In this case, variance = the sum of p(k) (v(k) - m)2, where k is each of the n possible results; p(k) is the probability that result k happens, v(k) is the value of result k, and m is the mean result.
In this case, for one spin, there are two possible results; 1, with probability 1/37, and 0, with probability 36/37.
This means p(1) = 1/37, v(1) = 1, p(2) = 36/37, v(2) = 0, and m = 1/37.
The variance = 1/37 x (1 - 1/37)2 + 36/37 x (0 - 1/37)2 = (362 + 36) / 373
= (36 x 37) / 373 = (6 / 37)2
and the standard deviation is the square root of this, or 6/37.
For x spins, there are (x + 1) possibile results - 0 hits, 1 hit, 2 hits, ..., (x - 1) hits, and x hits.
The probability of n hits is (x)C(n) (1/37)x (36/37)n-x, where (x)C(n) is the number of combinations of x items taken n at a time (also COMBIN(x,n) or C(x,n)); the value of n hits is n, and the mean in x spins is x/37.
If I am calculating this right, after X spins, the mean number of hits is X / 37, and the standard deviation is 6 sqrt(X) / 37.
Note that, while the standard deviation of 37,000 spins is about 31.2, the standard deviation of 74,000 spins is not twice that, but about 1.4 times that.
I have got some questions to your calculations,
and the standard deviation is the square root of this, or 6/37.
Question: does this mean that 6/37 is that you can run over / under expected value of +5 on average?
Note that, while the standard deviation of 37,000 spins is about 31.2, the standard deviation of 74,000 spins is not twice that, but about 1.4 times that.
Question: does this mean that after 37000 spins, there is a chance that 1 number runs over / under the expected value of 31.2 spins?
Thank you very much again!
Quote: masterjWow, that was quick! Thx man!
I have got some questions to your calculations,
and the standard deviation is the square root of this, or 6/37.
Question: does this mean that 6/37 is that you can run over / under expected value of +5 on average?
Note that, while the standard deviation of 37,000 spins is about 31.2, the standard deviation of 74,000 spins is not twice that, but about 1.4 times that.
Question: does this mean that after 37000 spins, there is a chance that 1 number runs over / under the expected value of 31.2 spins?
Thank you very much again!
6/37 is the standard deviation over one spin. For N spins, the standard deviation for the number of hits of a particular number is 6 sqrt(N) / 37.
There is about a 68% chance that a set of results will be within one standard deviation either way (i.e. anywhere from one SD below the mean to one SD above), and about a 95% chance that the results will be within two SDs either way. The exact value for N SDs is 200 sqrt(2 PI) times the integral from 0 to positive infinity of the function 1 / (e to the power of N2); however, there is no known "easy " way to calculate that - you have to use approximation methods.
For example, over 10,000 spins, the expected number of times 1 will come up is 10,000 / 37 = 270.27, and the standard deviation is 600 / 37 = 16.22, so 65% of the time, 1 should come up between 254.05 and 286.49 times, and 98% of the time, 1 should come up between 237.83 and 302.71 times.
Pardon me for asking, but why the interest in this particular situation?
Given 37,000 spins, it's almost certain that at least one number will go over the expected number of 1000 spins - in fact, the only way that no numbers have more than 1000 hits (and, for that matter, none have fewer than 1000) is if every number comes up 1000 times, which, despite being "expected," is almost impossible.
Pardon me for asking, but why the interest in this particular situation?
if you choose 1 out of 37 numbers, most of them are within one SD. if you can make a bigger profit with these numbers, then you loose on numbers within 2 SD, then it might be possible to make some money.
Quote: masterjHello all,
the expected frequency of won bets on 1 number of a European Roulette Wheel is p=1/37.
In the long run, you should get this result. (e.g. you win 1000 out of 37000 spins.
What are the deviations after x spins? It would be great if someone could tell me how I can calculate this?
Thank you very much,
The roulette numbers will never come out equally. Its like the lotto numbers. they come out close to one another only in percentages after lots of draws. The standard deviation separates them in absolute terms. it is called the normal probability rule. One app does good calculations (search SuperFormula).
For 1000 spins you got
The standard deviation for an event of probability
p = .02702703
in 1000 binomial experiments is:
BSD = 5.13
The expected (theoretical) number of successes is: 27
Based on the Normal Probability Rule:
* 68.2% of the successes will fall within 1 Standard Deviation
from 27 - i.e., between 22 - 32
* 95.4% of the successes will fall within 2 Standard Deviations
from 27 - i.e., between 17 - 37
* 99.7% of the successes will fall within 3 Standard Deviations
from 27 - i.e., between 12 - 42
I submit to you that no roulette number will show fewer than 12 hits and no more than 42 wins. That happens 99.7% of the times.
I saw results for about 8000 real spins from a German casino (I think the only who publishes roulette resulst).
The standard deviation for an event of probability
p = .02702703
in 7990 binomial experiments is:
BSD = 14.5
The expected (theoretical) number of successes is: 216
Based on the Normal Probability Rule:
* 68.2% of the successes will fall within 1 Standard Deviation
from 216 - i.e., between 202 - 230
* 95.4% of the successes will fall within 2 Standard Deviations
from 216 - i.e., between 188 - 244
* 99.7% of the successes will fall within 3 Standard Deviations
from 216 - i.e., between 174 - 258
The coldest number had 192 hits and the hottest won 239 wins – inside the calculated limits. It is convincing that you can win at roulette with particular numbers * you might find the bias *
https://download.saliu.com/roulette-systems.html
Roulette Numbers Ranked by Frequency
Quote: weezrDASvegasThe roulette numbers will never come out equally. Its like the lotto numbers. they come out close to one another only in percentages after lots of draws. The standard deviation separates them in absolute terms. it is called the normal probability rule. One app does good calculations (search SuperFormula).
For 1000 spins you got
The standard deviation for an event of probability
p = .02702703
in 1000 binomial experiments is:
BSD = 5.13
The expected (theoretical) number of successes is: 27
Based on the Normal Probability Rule:
* 68.2% of the successes will fall within 1 Standard Deviation
from 27 - i.e., between 22 - 32
* 95.4% of the successes will fall within 2 Standard Deviations
from 27 - i.e., between 17 - 37
* 99.7% of the successes will fall within 3 Standard Deviations
from 27 - i.e., between 12 - 42
I submit to you that no roulette number will show fewer than 12 hits and no more than 42 wins. That happens 99.7% of the times.
I saw results for about 8000 real spins from a German casino (I think the only who publishes roulette resulst).
The standard deviation for an event of probability
p = .02702703
in 7990 binomial experiments is:
BSD = 14.5
The expected (theoretical) number of successes is: 216
Based on the Normal Probability Rule:
* 68.2% of the successes will fall within 1 Standard Deviation
from 216 - i.e., between 202 - 230
* 95.4% of the successes will fall within 2 Standard Deviations
from 216 - i.e., between 188 - 244
* 99.7% of the successes will fall within 3 Standard Deviations
from 216 - i.e., between 174 - 258
The coldest number had 192 hits and the hottest won 239 wins – inside the calculated limits. It is convincing that you can win at roulette with particular numbers * you might find the bias *
https://download.saliu.com/roulette-systems.html
Roulette Numbers Ranked by Frequency
If you average the coldest and hottest numbers you get the expected number of successes (216)
192+239=431 average 215.5~216
The standard deviation for an event of probability
p = .02702703
in 7990 binomial experiments is:
BSD = 14.5
The expected (theoretical) number of successes is: 216
Based on the Normal Probability Rule:
* 68.2% of the successes will fall within 1 Standard Deviation
from 216 - i.e., between 202 - 230
* 95.4% of the successes will fall within 2 Standard Deviations
from 216 - i.e., between 188 - 244
* 99.7% of the successes will fall within 3 Standard Deviations
from 216 - i.e., between 174 - 258
do these deviations get smaller or bigger the more spins you play?
Quote: masterjHello weezrDASvegas,
The standard deviation for an event of probability
p = .02702703
in 7990 binomial experiments is:
BSD = 14.5
The expected (theoretical) number of successes is: 216
Based on the Normal Probability Rule:
* 68.2% of the successes will fall within 1 Standard Deviation
from 216 - i.e., between 202 - 230
* 95.4% of the successes will fall within 2 Standard Deviations
from 216 - i.e., between 188 - 244
* 99.7% of the successes will fall within 3 Standard Deviations
from 216 - i.e., between 174 - 258
do these deviations get smaller or bigger the more spins you play?
standard deviation gets BIGGER and B I G G E R the more spins you play. the gaps between roulette numbers get bigger although percentages get closer.
100 spins - SD = 1.6
1000 spins - SD = 5.13
7990 spins - SD = 14.5
37000 spins - SD = 31.2
SuperFormula.exe calculates
The standard deviation for an event of probability
p = .02702703
in 37000 binomial experiments is:
BSD = 31.19
The expected (theoretical) number of successes is: 1000
Based on the Normal Probability Rule:
* 68.2% of the successes will fall within 1 Standard Deviation
from 1000 - i.e., between 969 - 1031
* 95.4% of the successes will fall within 2 Standard Deviations
from 1000 - i.e., between 938 - 1062
* 99.7% of the successes will fall within 3 Standard Deviations
from 1000 - i.e., between 907 - 1093
You can expect no fewer than 907 wins but no more than 1093 hits. hopefully you'll be on the righthand side
https://saliu.com/scientific-software.html
Scientific Software for Mathematics, Probability, Odds
1 / (1000 * 36/37 * 2 * PI)^.5 = 1.28%
For this many trials, the estimate is accurate to at least 16 digits (as far as my excel goes) relative to the probability mass function.
Quote: Ace2To calculate the probability of getting exactly 1000 wins in 37000, a useful approximation is:
1 / (1000 * 36/37 * 2 * PI)^.5 = 1.28%
For this many trials, the estimate is accurate to at least 16 digits (as far as my excel goes) relative to the probability mass function.
SuperFormula.exe calculus
exactly 1000 wins in 37000 spins: 1 in 2.50991163241154E+1058
at least 1000 wins in 37000 spins: 1 in 2.45739805052973E+1058
you can bet all your babymilk money that it would never happen.. its like 1 in (25followed by 1057 zeros)... the norm never happens absolutely.. but you can seriously hope you gonna be on the righthand side.. just follow the trend…
Obviously those are not equally distributed with values closer to the mean being higher. 1.28% seems reasonable.
Above or below the mean will be (100 - 1.28) / 2 = 49.36%
How do you justify 2.5 * 10^1058?
Quote: Ace2Reasonableness test. For 37000 spins we know the expectation is 1000 wins, and with a SD of 31 we know there’s a 68% chance the result will be between 969 and 1031. So 68% / 62 values in that range is an average of 1.1 % per value.
Obviously those are not equally distributed with values closer to the mean being higher. 1.28% seems reasonable.
Above or below the mean will be (100 - 1.28) / 2 = 49.36%
How do you justify 2.5 * 10^1058?
“How do you justify 2.5 * 10^1058?”
I guess its maths.. ‘exactly M successes in N trials’ in SuperFormula.exe. take sum easier case like cointoss
Exactly 1000 heads in 37000 tosses
1 in 1708175116
Exactly is very HARD to get… the more successes the harder it gets for exactly one success... your calculations are… i don’t know how you came up with them??
If you sez 1000 wins in 37000 spins probability is 49.36%??? well… you bettah check your pulse.. you never get that probability.. run any random generators: you never see a roulette number with 1000 hits in 37000 spins. run this free roulette generator
https://saliu.com/bbs/messages/301.html
Online Roulette Number Generator
Quote: weezrDASvegas“How do you justify 2.5 * 10^1058?”
I guess its maths.. ‘exactly M successes in N trials’ in SuperFormula.exe. take sum easier case like cointoss
Exactly 1000 heads in 37000 tosses
1 in 1708175116
Exactly is very HARD to get… the more successes the harder it gets for exactly one success... your calculations are… i don’t know how you came up with them??
If you sez 1000 wins in 37000 spins probability is 49.36%??? well… you bettah check your pulse.. you never get that probability.. run any random generators: you never see a roulette number with 1000 hits in 37000 spins. run this free roulette generator
https://saliu.com/bbs/messages/301.html
Online Roulette Number Generator
Maybe that SuperFormula.exe is limited to some 1750 max trials. but we can calculate for fewer trials and the simple coin toss.
* exactly 5 successes in 10 trials: 24.6% (you might figure 50%)
* exactly 50 successes in 100 trials: 8% (you might figure 50%)
* exactly 500 successes in 1000 trials: 2.5% (you might figure 50%)
* exactly 1000 successes in 1750 trials: 1 in 3140653769.
So the more successes the harder it gets for exactly one success...
Quote: weezrDASvegasQuote: weezrDASvegas“How do you justify 2.5 * 10^1058?”
I guess its maths.. ‘exactly M successes in N trials’ in SuperFormula.exe. take sum easier case like cointoss
Exactly 1000 heads in 37000 tosses
1 in 1708175116
Exactly is very HARD to get… the more successes the harder it gets for exactly one success... your calculations are… i don’t know how you came up with them??
If you sez 1000 wins in 37000 spins probability is 49.36%??? well… you bettah check your pulse.. you never get that probability.. run any random generators: you never see a roulette number with 1000 hits in 37000 spins. run this free roulette generator
https://saliu.com/bbs/messages/301.html
Online Roulette Number Generator
Maybe that SuperFormula.exe is limited to some 1750 max trials. but we can calculate for fewer trials and the simple coin toss.
* exactly 5 successes in 10 trials: 24.6% (you might figure 50%)
* exactly 50 successes in 100 trials: 8% (you might figure 50%)
* exactly 500 successes in 1000 trials: 2.5% (you might figure 50%)
* exactly 1000 successes in 1750 trials: 1 in 3140653769.
So the more successes the harder it gets for exactly one success...
Maybe that SuperFormula.exe is limited to some 1750 max trials. but we can calculate for fewer trials and the simple coin toss.
* exactly 5 successes in 10 trials: 24.6% (you might figure 50%)
* exactly 50 successes in 100 trials: 8% (you might figure 50%)
* exactly 500 successes in 1000 trials: 2.5% (you might figure 50%)
* exactly 1000 successes in 1750 trials: 1 in 3140653769.
So the more successes the harder it gets for exactly one success...
I just read –
There is a data size limit. The number of trials N must not be larger than 1754. There will be an overflow if you use very large numbers. The factorials grow crazily high and fast!
The generalized formula for exactly M successes in N trials:
BDF = C(N, M) * pM * [(1 — p)]^(N — M)
https://saliu.com/formula.html
Software for Probability, Odds, Statistics, Gambling
Quote: Ace2You might want to reread the title of this thread. It’s not about coin tosses
“You might want to reread the title of this thread. It’s not about coin tosses”
Exactlymundo! That’s what I thought mah man. the odds for roulette are even sharper against 1000 hits by a roulette number in 37000 spins. its “exactly” like the more successes the harder it gets for exactly one success... far from 49.36% for one roulette number to record 1000 hits in 37000 spins… no way…
Quote: weezrDASvegas“How do you justify 2.5 * 10^1058?”
I guess its maths.. ‘exactly M successes in N trials’ in SuperFormula.exe. take sum easier case like cointoss
Exactly 1000 heads in 37000 tosses
1 in 1708175116
It's not that hard; I get 1 in 78.2.
Here's how:
The probability of getting 1000, say, zeroes in 37,000 spins of a single-zero wheel is (37,000)C(1000) x (1/37)1000 x (36/37)36,000
Most methods of calculating this would result in arithmetic overflows, but if you use logarithms and a spreadsheet, you can do it.
(37,000)C(1000) = 37,000 / 1 x 36,999 / 2 x 36,998 / 3 x ... x 36,002 / 999 x 36,001 / 1000
log ((37,000)C(1000)) = log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000
(1/37)1000 x (36/37)36,000 = 3636,000 / 3737,000
log ((1/37)1000 x (36/37)36,000) = 36,000 log 36 - 37,000 log 37
log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.
Quote: ThatDonGuyIt's not that hard; I get 1 in 78.2.
Here's how:
The probability of getting 1000, say, zeroes in 37,000 spins of a single-zero wheel is (37,000)C(1000) x (1/37)1000 x (36/37)36,000
Most methods of calculating this would result in arithmetic overflows, but if you use logarithms and a spreadsheet, you can do it.
(37,000)C(1000) = 37,000 / 1 x 36,999 / 2 x 36,998 / 3 x ... x 36,002 / 999 x 36,001 / 1000
log ((37,000)C(1000)) = log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000
(1/37)1000 x (36/37)36,000 = 3636,000 / 3737,000
log ((1/37)1000 x (36/37)36,000) = 36,000 log 36 - 37,000 log 37
log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.
“It's not that hard; I get 1 in 78.2.
Here's how:
The probability of getting 1000, say, zeroes in 37,000 spins of a single-zero wheel is (37,000)C(1000) x (1/37)1000 x (36/37)36,000”
how’s trix? you multiplied BDF by 1000 as if 1000 successes were added as OR. based on your logic its HARDER to get 100 successes than 1000.
AND THERE AINT NO C(1000) MUST BE SUM LIKE C(1000, K) THE FORMULA IN SANE MATHS IS ONLY ONE
BDF = C(N, M) * p^M * (1 — p)^(N — M)
Notice C(N, M)
Quote: weezrDASvegas“It's not that hard; I get 1 in 78.2.
BDF = C(N, M) * p^M * (1 — p)^(N — M)
Notice C(N, M)
I use (N)C(M) for C(N,M). Others use Combin(N,M).
Obviously. 1000 is the expected (and most probable) value. 100 is 900/31 = 29 standard deviations out.Quote: weezrDASvegas
how’s trix? you multiplied BDF by 1000 as if 1000 successes were added as OR. based on your logic its HARDER to get 100 successes than 1000
Quote: ThatDonGuyIt's not that hard; I get 1 in 78.2.
Here's how:
The probability of getting 1000, say, zeroes in 37,000 spins of a single-zero wheel is (37,000)C(1000) x (1/37)1000 x (36/37)36,000
Most methods of calculating this would result in arithmetic overflows, but if you use logarithms and a spreadsheet, you can do it.
(37,000)C(1000) = 37,000 / 1 x 36,999 / 2 x 36,998 / 3 x ... x 36,002 / 999 x 36,001 / 1000
log ((37,000)C(1000)) = log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000
(1/37)1000 x (36/37)36,000 = 3636,000 / 3737,000
log ((1/37)1000 x (36/37)36,000) = 36,000 log 36 - 37,000 log 37
log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.
“log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.”
Boy, oh, boy!!!
REPEAT
THE FORMULA IN SANE MATHS IS ONLY ONE
BDF = C(N, M) * p^M * (1 — p)^(N — M)
There aint nothing else around this formula for M SUCCESSES IN N TRIALS, where M<=N
Quote: Ace2Obviously. 1000 is the expected (and most probable) value. 100 is 900/31 = 29 standard deviations out.
“Obviously. 1000 is the expected (and most probable) value. 100 is 900/31 = 29 standard deviations out.”
is the most brilliant madness case in any psychiatric textbook!!!
29 STANDARD DEVIATIONS OUT!!!
THEY SETTLED FOR JUST 3 STANDARD DEVIATIONS OUT AS THEY COVER 99.7% CASES!!! HOW MANY INSANE CASES WOULD 29 STANDARD DEVIATIONS OUT COVER???
exactly 500 successes in 1000 trials: 2.5% (you might figure 50%) is NOT “the expected (and most probable) value”. The EXPECTED value is NOT the most “probable value” in the largest majority of cases.
Correct - and that's what I used,Quote: weezrDASvegasQuote: ThatDonGuyIt's not that hard; I get 1 in 78.2.
Here's how:
The probability of getting 1000, say, zeroes in 37,000 spins of a single-zero wheel is (37,000)C(1000) x (1/37)1000 x (36/37)36,000
Most methods of calculating this would result in arithmetic overflows, but if you use logarithms and a spreadsheet, you can do it.
(37,000)C(1000) = 37,000 / 1 x 36,999 / 2 x 36,998 / 3 x ... x 36,002 / 999 x 36,001 / 1000
log ((37,000)C(1000)) = log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000
(1/37)1000 x (36/37)36,000 = 3636,000 / 3737,000
log ((1/37)1000 x (36/37)36,000) = 36,000 log 36 - 37,000 log 37
log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.
“log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.”
Boy, oh, boy!!!
REPEAT
THE FORMULA IN SANE MATHS IS ONLY ONE
BDF = C(N, M) * p^M * (1 — p)^(N — M)
There aint nothing else around this formula for M SUCCESSES IN N TRIALS, where M<=N
C(37,000, 1000) * (1/37)^1000 * (36/37)^36,000 = about 1 / 78.19456.
However, if you try calculating this, you get some incredibly large numbers - for example:
C(37,000, 1000) = 479,276,699,178,809
,649,854,007,516,573,731,742,327,273,069
,805,016,086,657,405,455,109,799,606,702
,488,074,316,078,886,738,673,405,423,536
,935,995,180,640,134,170,351,203,927,583
,441,073,501,450,606,034,739,281,380,081
,266,971,643,546,937,157,336,662,888,922
,253,691,906,080,498,872,891,827,810,260
,123,627,597,442,890,261,235,017,526,349
,206,317,513,740,605,712,640,017,265,142
,974,688,761,487,034,690,463,696,780,162
,215,085,889,685,494,249,490,525,236,409
,469,240,814,649,833,608,046,768,129,786
,581,489,455,386,273,747,686,446,966,729
,405,118,683,652,656,515,783,092,956,219
,134,045,074,789,599,756,927,735,827,596
,658,822,553,856,917,516,397,236,435,813
,161,723,188,024,710,387,951,880,112,301
,158,825,892,566,463,810,963,013,768,882
,817,406,866,641,260,587,584,829,999,008
,147,384,380,458,874,009,596,572,030,879
,848,117,282,525,969,342,809,054,946,839
,342,858,681,545,894,890,490,336,636,103
,689,016,433,539,011,047,886,984,785,468
,380,720,407,098,050,506,787,090,587,675
,922,007,973,537,988,719,106,628,037,637
,201,188,379,455,839,387,495,776,823,185
,949,485,546,344,041,897,490,449,177,307
,306,200,622,994,704,372,960,416,193,336
,688,308,713,514,327,058,685,135,578,804
,394,060,159,144,923,559,645,007,689,684
,251,222,486,397,584,028,502,937,082,204
,358,533,104,641,877,406,718,240,282,261
,782,869,775,064,983,145,093,871,815,047
,611,226,716,711,985,847,297,826,933,578
,822,811,723,698,508,244,220,268,746,362
,471,556,340,712,370,272,754,537,463,366
,470,328,884,897,135,476,737,821,874,244
,866,467,383,847,786,965,458,952,998,588
,646,202,234,696,643,914,331,164,731,120
,696,118,602,946,955,042,436,415,360,583
,800,119,156,026,077,108,210,288,200,171
,543,780,460,665,972,025,328,483,787,834
,834,326,609,687,380,472,280,261,337,876
,258,947,467,008,777,949,621,986,484,591
,629,806,072,515,626,901,321,190,886,205
,758,970,285,393,041,086,834,041,780,080
,097,257,762,255,249,024,777,235,192,639
,390,351,457,284,466,347,596,327,472,028
,526,176,040,029,776,609,721,789,662,742
,918,233,956,273,583,373,632,927,934,549
,338,501,441,407,809,662,581,088,983,489
,387,476,400,674,188,551,714,927,652,671
,236,973,901,796,994,054,803,975,272,026
,083,124,171,733,928,272,977,188,321,254
,479,149,728,028,229,308,027,858,103,509
,046,658,217,579,332,379,673,689,007,685
,023,992,631,412,835,356,783,313,694,401
,502,082,353,166,957,744,010,576,726,927
,867,927,846,209,737,291,572,878,147,601
,030,873,362,980,407,225,271,549,165,836
,099,653,929,007,468,378,098,599,877,215
,417,732,947,321,440,475,756,911,637,413
,002,847,727,410,003,441,734,525,421,999
,551,574,325,706,603,163,072,805,655,372
,445,389,579,976,492,590,483,756,353,780
,275,903,959,095,519,952,117,190,925,440
That's a 1995-digit number
However, if you note a few things, it makes calculating it simpler:
10^(log N) = N
log (A * B) = log A + log B
log (A^B) = B log A
Let P be the value we are trying to calculate
P = C(37,000, 1000) * (1/37)^1000 * (36/37)^36,000
As shown in that spoiler box, C(37,000, 1000) = about 4.79277 * 10^1994
(1/37)^1000 = 1 / (37^1000), and (36/37)^36,000 = (36^36,000) / (37^36,000)
(1/37)^1000 * (36/37)^36,000 = (36^36,000) / (37^37,000)
So P = C(37,000, 1000) * (36^36,000) / (37^37,000)
log P = log (C(37,000, 1000) * (36^36,000) / (37^37,000))
= log (4.79277 * 10^1994) + log (36^36,000) - log (37^37,000)
= log 4.79277 + log (10^1994) + log (36^36,000) - log (37^37,000)
= 0.6806 + 1994 + 36,000 log (36) - 37,000 log (37)
= -1.8931763
P = 10^(log P) = 10^(-1.8931763) = about 1 / 78.1945.
Got it?
Also, some quick computing shows that 10^1058 is approximately the probability of zero coming up 3834 times in 37,000 spins.
Quote: ThatDonGuyCorrect - and that's what I used,Quote: weezrDASvegasQuote: ThatDonGuyIt's not that hard; I get 1 in 78.2.
Here's how:
The probability of getting 1000, say, zeroes in 37,000 spins of a single-zero wheel is (37,000)C(1000) x (1/37)1000 x (36/37)36,000
Most methods of calculating this would result in arithmetic overflows, but if you use logarithms and a spreadsheet, you can do it.
(37,000)C(1000) = 37,000 / 1 x 36,999 / 2 x 36,998 / 3 x ... x 36,002 / 999 x 36,001 / 1000
log ((37,000)C(1000)) = log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000
(1/37)1000 x (36/37)36,000 = 3636,000 / 3737,000
log ((1/37)1000 x (36/37)36,000) = 36,000 log 36 - 37,000 log 37
log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.
“log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.”
Boy, oh, boy!!!
REPEAT
THE FORMULA IN SANE MATHS IS ONLY ONE
BDF = C(N, M) * p^M * (1 — p)^(N — M)
There aint nothing else around this formula for M SUCCESSES IN N TRIALS, where M<=N
C(37,000, 1000) * (1/37)^1000 * (36/37)^36,000 = about 1 / 78.19456.
However, if you try calculating this, you get some incredibly large numbers - for example:C(37,000, 1000) = 479,276,699,178,809
,649,854,007,516,573,731,742,327,273,069
,805,016,086,657,405,455,109,799,606,702
,488,074,316,078,886,738,673,405,423,536
,935,995,180,640,134,170,351,203,927,583
,441,073,501,450,606,034,739,281,380,081
,266,971,643,546,937,157,336,662,888,922
,253,691,906,080,498,872,891,827,810,260
,123,627,597,442,890,261,235,017,526,349
,206,317,513,740,605,712,640,017,265,142
,974,688,761,487,034,690,463,696,780,162
,215,085,889,685,494,249,490,525,236,409
,469,240,814,649,833,608,046,768,129,786
,581,489,455,386,273,747,686,446,966,729
,405,118,683,652,656,515,783,092,956,219
,134,045,074,789,599,756,927,735,827,596
,658,822,553,856,917,516,397,236,435,813
,161,723,188,024,710,387,951,880,112,301
,158,825,892,566,463,810,963,013,768,882
,817,406,866,641,260,587,584,829,999,008
,147,384,380,458,874,009,596,572,030,879
,848,117,282,525,969,342,809,054,946,839
,342,858,681,545,894,890,490,336,636,103
,689,016,433,539,011,047,886,984,785,468
,380,720,407,098,050,506,787,090,587,675
,922,007,973,537,988,719,106,628,037,637
,201,188,379,455,839,387,495,776,823,185
,949,485,546,344,041,897,490,449,177,307
,306,200,622,994,704,372,960,416,193,336
,688,308,713,514,327,058,685,135,578,804
,394,060,159,144,923,559,645,007,689,684
,251,222,486,397,584,028,502,937,082,204
,358,533,104,641,877,406,718,240,282,261
,782,869,775,064,983,145,093,871,815,047
,611,226,716,711,985,847,297,826,933,578
,822,811,723,698,508,244,220,268,746,362
,471,556,340,712,370,272,754,537,463,366
,470,328,884,897,135,476,737,821,874,244
,866,467,383,847,786,965,458,952,998,588
,646,202,234,696,643,914,331,164,731,120
,696,118,602,946,955,042,436,415,360,583
,800,119,156,026,077,108,210,288,200,171
,543,780,460,665,972,025,328,483,787,834
,834,326,609,687,380,472,280,261,337,876
,258,947,467,008,777,949,621,986,484,591
,629,806,072,515,626,901,321,190,886,205
,758,970,285,393,041,086,834,041,780,080
,097,257,762,255,249,024,777,235,192,639
,390,351,457,284,466,347,596,327,472,028
,526,176,040,029,776,609,721,789,662,742
,918,233,956,273,583,373,632,927,934,549
,338,501,441,407,809,662,581,088,983,489
,387,476,400,674,188,551,714,927,652,671
,236,973,901,796,994,054,803,975,272,026
,083,124,171,733,928,272,977,188,321,254
,479,149,728,028,229,308,027,858,103,509
,046,658,217,579,332,379,673,689,007,685
,023,992,631,412,835,356,783,313,694,401
,502,082,353,166,957,744,010,576,726,927
,867,927,846,209,737,291,572,878,147,601
,030,873,362,980,407,225,271,549,165,836
,099,653,929,007,468,378,098,599,877,215
,417,732,947,321,440,475,756,911,637,413
,002,847,727,410,003,441,734,525,421,999
,551,574,325,706,603,163,072,805,655,372
,445,389,579,976,492,590,483,756,353,780
,275,903,959,095,519,952,117,190,925,440
That's a 1995-digit number
However, if you note a few things, it makes calculating it simpler:
10^(log N) = N
log (A * B) = log A + log B
log (A^B) = B log A
Let P be the value we are trying to calculate
P = C(37,000, 1000) * (1/37)^1000 * (36/37)^36,000
As shown in that spoiler box, C(37,000, 1000) = about 4.79277 * 10^1994
(1/37)^1000 = 1 / (37^1000), and (36/37)^36,000 = (36^36,000) / (37^36,000)
(1/37)^1000 * (36/37)^36,000 = (36^36,000) / (37^37,000)
So P = C(37,000, 1000) * (36^36,000) / (37^37,000)
log P = log (C(37,000, 1000) * (36^36,000) / (37^37,000))
= log (4.79277 * 10^1994) + log (36^36,000) - log (37^37,000)
= log 4.79277 + log (10^1994) + log (36^36,000) - log (37^37,000)
= 0.6806 + 1994 + 36,000 log (36) - 37,000 log (37)
= -1.8931763
P = 10^(log P) = 10^(-1.8931763) = about 1 / 78.1945.
Got it?
Also, some quick computing shows that 10^1058 is approximately the probability of zero coming up 3834 times in 37,000 spins.
Copy and paste the link^
Quote: GeoDawgCopy and paste the link^
For some strange reason, the link didn't show up until I replied to the message.
Is there anything in particular I should be looking at in that paper?
Here are the probabilities (expressed as "1 in X") of getting exactly N zeroes in 37,000 spins, for N = 0, 10, 20, 30, ..., 9980, 9990:
(I was going to post numbers up to 37,000, but the post was too long for the board software to handle):
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 1.8675 x 10^440 | 5.1589 x 10^416 | 2.6401 x 10^398 | 2.2031 x 10^382 | 5.2011 x 10^367 | 1.4919 x 10^354 | 3.1497 x 10^341 | 3.5082 x 10^329 | 1.6261 x 10^318 | 2.6261 x 10^307 |
100 | 1.2867 x 10^297 | 1.7127 x 10^287 | 5.6577 x 10^277 | 4.3012 x 10^268 | 7.0604 x 10^259 | 2.3692 x 10^251 | 1.5501 x 10^243 | 1.8969 x 10^235 | 4.1857 x 10^227 | 1.6121 x 10^220 |
200 | 1.0527 x 10^213 | 1.1352 x 10^206 | 1.9743 x 10^199 | 5.4197 x 10^192 | 2.3024 x 10^186 | 1.4866 x 10^180 | 1.4348 x 10^174 | 2.0388 x 10^168 | 4.2044 x 10^162 | 1.2418 x 10^157 |
300 | 5.1899 x 10^151 | 3.0337 x 10^146 | 2.4539 x 10^141 | 2.7194 x 10^136 | 4.0896 x 10^131 | 8.2728 x 10^126 | 2.2321 x 10^122 | 7.9702 x 10^117 | 3.7379 x 10^113 | 2.2862 x 10^109 |
400 | 1.8115 x 10^105 | 1.8475 x 10^101 | 2.4106 x 10^97 | 4.0008 x 10^93 | 8.3994 x 10^89 | 2.2188 x 10^86 | 7.3386 x 10^82 | 3.0241 x 10^79 | 1.5455 x 10^76 | 9.7535 x 10^72 |
500 | 7.5678 x 10^69 | 7.1902 x 10^66 | 8.3326 x 10^63 | 1.1734 x 10^61 | 2.0007 x 10^58 | 4.1160 x 10^55 | 1.0182 x 10^53 | 3.0192 x 10^50 | 1.0696 x 10^48 | 4.5148 x 10^45 |
600 | 2.2634 x 10^43 | 1.3440 x 10^41 | 9.4271 x 10^38 | 7.7900 x 10^36 | 7.5645 x 10^34 | 8.6104 x 10^32 | 1.1461 x 10^31 | 1.7798 x 10^29 | 3.2174 x 10^27 | 6.7553 x 10^25 |
700 | 1.6439 x 10^24 | 4.6271 x 10^22 | 1.5033 x 10^21 | 5.6272 x 10^19 | 2.4220 x 10^18 | 1.1964 x 10^17 | 6.7718 x 10^15 | 4.3834 x 10^14 | 3.2395 x 10^13 | 2.7289 x 10^12 |
800 | 2.6160 x 10^11 | 2.8494 x 10^10 | 3.5208 x 10^9 | 4.9280 x 10^8 | 7.8017 x 10^7 | 1.3950 x 10^7 | 2.8134 x 10^6 | 6.3910 x 10^5 | 1.6330 x 10^5 | 46875.81244 |
900 | 15096.41253 | 5447.92164 | 2200.34465 | 993.42585 | 500.79311 | 281.55512 | 176.34582 | 122.91029 | 95.22850 | 81.93044 |
1,000 | 78.19454 | 82.70320 | 96.83978 | 125.41516 | 179.47268 | 283.52674 | 494.01491 | 948.52092 | 2005.08314 | 4662.52648 |
1,100 | 11916.40996 | 33445.92384 | 1.0300 x 10^5 | 3.4781 x 10^5 | 1.2866 x 10^6 | 5.2103 x 10^6 | 2.3079 x 10^7 | 1.1174 x 10^8 | 5.9094 x 10^8 | 3.4108 x 10^9 |
1,200 | 2.1472 x 10^10 | 1.4732 x 10^11 | 1.1009 x 10^12 | 8.9547 x 10^12 | 7.9223 x 10^13 | 7.6185 x 10^14 | 7.9586 x 10^15 | 9.0256 x 10^16 | 1.1104 x 10^18 | 1.4814 x 10^19 |
1,300 | 2.1415 x 10^20 | 3.3524 x 10^21 | 5.6803 x 10^22 | 1.0410 x 10^24 | 2.0627 x 10^25 | 4.4161 x 10^26 | 1.0209 x 10^28 | 2.5474 x 10^29 | 6.8567 x 10^30 | 1.9898 x 10^32 |
1,400 | 6.2223 x 10^33 | 2.0956 x 10^35 | 7.5982 x 10^36 | 2.9640 x 10^38 | 1.2435 x 10^40 | 5.6076 x 10^41 | 2.7168 x 10^43 | 1.4135 x 10^45 | 7.8945 x 10^46 | 4.7303 x 10^48 |
1,500 | 3.0396 x 10^50 | 2.0936 x 10^52 | 1.5451 x 10^54 | 1.2213 x 10^56 | 1.0334 x 10^58 | 9.3574 x 10^59 | 9.0628 x 10^61 | 9.3848 x 10^63 | 1.0386 x 10^66 | 1.2280 x 10^68 |
1,600 | 1.5505 x 10^70 | 2.0899 x 10^72 | 3.0058 x 10^74 | 4.6113 x 10^76 | 7.5432 x 10^78 | 1.3151 x 10^81 | 2.4431 x 10^83 | 4.8339 x 10^85 | 1.0183 x 10^88 | 2.2831 x 10^90 |
1,700 | 5.4464 x 10^92 | 1.3818 x 10^95 | 3.7274 x 10^97 | 1.0686 x 10^100 | 3.2555 x 10^102 | 1.0533 x 10^105 | 3.6187 x 10^107 | 1.3196 x 10^110 | 5.1062 x 10^112 | 2.0959 x 10^115 |
1,800 | 9.1233 x 10^117 | 4.2099 x 10^120 | 2.0588 x 10^123 | 1.0667 x 10^126 | 5.8539 x 10^128 | 3.4015 x 10^131 | 2.0922 x 10^134 | 1.3618 x 10^137 | 9.3775 x 10^139 | 6.8294 x 10^142 |
1,900 | 5.2588 x 10^145 | 4.2804 x 10^148 | 3.6817 x 10^151 | 3.3455 x 10^154 | 3.2108 x 10^157 | 3.2537 x 10^160 | 3.4807 x 10^163 | 3.9294 x 10^166 | 4.6803 x 10^169 | 5.8802 x 10^172 |
2,000 | 7.7906 x 10^175 | 1.0881 x 10^179 | 1.6020 x 10^182 | 2.4852 x 10^185 | 4.0616 x 10^188 | 6.9914 x 10^191 | 1.2672 x 10^195 | 2.4179 x 10^198 | 4.8559 x 10^201 | 1.0261 x 10^205 |
2,100 | 2.2812 x 10^208 | 5.3339 x 10^211 | 1.3114 x 10^215 | 3.3898 x 10^218 | 9.2095 x 10^221 | 2.6292 x 10^225 | 7.8861 x 10^228 | 2.4845 x 10^232 | 8.2202 x 10^235 | 2.8555 x 10^239 |
2,200 | 1.0412 x 10^243 | 3.9849 x 10^246 | 1.6002 x 10^250 | 6.7413 x 10^253 | 2.9787 x 10^257 | 1.3802 x 10^261 | 6.7052 x 10^264 | 3.4145 x 10^268 | 1.8223 x 10^272 | 1.0191 x 10^276 |
2,300 | 5.9711 x 10^279 | 3.6643 x 10^283 | 2.3549 x 10^287 | 1.5846 x 10^291 | 1.1163 x 10^295 | 8.2308 x 10^298 | 6.3508 x 10^302 | 5.1270 x 10^306 | 4.3298 x 10^310 | 3.8246 x 10^314 |
2,400 | 3.5328 x 10^318 | 3.4119 x 10^322 | 3.4446 x 10^326 | 3.6349 x 10^330 | 4.0084 x 10^334 | 4.6185 x 10^338 | 5.5591 x 10^342 | 6.9891 x 10^346 | 9.1764 x 10^350 | 1.2580 x 10^355 |
2,500 | 1.8005 x 10^359 | 2.6899 x 10^363 | 4.1942 x 10^367 | 6.8240 x 10^371 | 1.1583 x 10^376 | 2.0512 x 10^380 | 3.7885 x 10^384 | 7.2971 x 10^388 | 1.4655 x 10^393 | 3.0684 x 10^397 |
2,600 | 6.6968 x 10^401 | 1.5233 x 10^406 | 3.6108 x 10^410 | 8.9177 x 10^414 | 2.2944 x 10^419 | 6.1492 x 10^423 | 1.7163 x 10^428 | 4.9886 x 10^432 | 1.5096 x 10^437 | 4.7561 x 10^441 |
2,700 | 1.5596 x 10^446 | 5.3230 x 10^450 | 1.8905 x 10^455 | 6.9859 x 10^459 | 2.6856 x 10^464 | 1.0739 x 10^469 | 4.4665 x 10^473 | 1.9317 x 10^478 | 8.6875 x 10^482 | 4.0618 x 10^487 |
2,800 | 1.9741 x 10^492 | 9.9728 x 10^496 | 5.2357 x 10^501 | 2.8563 x 10^506 | 1.6189 x 10^511 | 9.5334 x 10^515 | 5.8311 x 10^520 | 3.7044 x 10^525 | 2.4439 x 10^530 | 1.6741 x 10^535 |
2,900 | 1.1907 x 10^540 | 8.7918 x 10^544 | 6.7380 x 10^549 | 5.3596 x 10^554 | 4.4241 x 10^559 | 3.7894 x 10^564 | 3.3675 x 10^569 | 3.1044 x 10^574 | 2.9687 x 10^579 | 2.9443 x 10^584 |
3,000 | 3.0284 x 10^589 | 3.2299 x 10^594 | 3.5716 x 10^599 | 4.0945 x 10^604 | 4.8658 x 10^609 | 5.9932 x 10^614 | 7.6504 x 10^619 | 1.0120 x 10^625 | 1.3870 x 10^630 | 1.9696 x 10^635 |
3,100 | 2.8975 x 10^640 | 4.4151 x 10^645 | 6.9679 x 10^650 | 1.1388 x 10^656 | 1.9274 x 10^661 | 3.3776 x 10^666 | 6.1278 x 10^671 | 1.1508 x 10^677 | 2.2373 x 10^682 | 4.5016 x 10^687 |
3,200 | 9.3736 x 10^692 | 2.0197 x 10^698 | 4.5030 x 10^703 | 1.0386 x 10^709 | 2.4784 x 10^714 | 6.1175 x 10^719 | 1.5617 x 10^725 | 4.1235 x 10^730 | 1.1258 x 10^736 | 3.1785 x 10^741 |
3,300 | 9.2780 x 10^746 | 2.7998 x 10^752 | 8.7340 x 10^757 | 2.8162 x 10^763 | 9.3853 x 10^768 | 3.2323 x 10^774 | 1.1504 x 10^780 | 4.2304 x 10^785 | 1.6073 x 10^791 | 6.3090 x 10^796 |
3,400 | 2.5581 x 10^802 | 1.0713 x 10^808 | 4.6343 x 10^813 | 2.0702 x 10^819 | 9.5503 x 10^824 | 4.5491 x 10^830 | 2.2372 x 10^836 | 1.1359 x 10^842 | 5.9538 x 10^847 | 3.2211 x 10^853 |
3,500 | 1.7987 x 10^859 | 1.0366 x 10^865 | 6.1653 x 10^870 | 3.7836 x 10^876 | 2.3959 x 10^882 | 1.5653 x 10^888 | 1.0549 x 10^894 | 7.3350 x 10^899 | 5.2603 x 10^905 | 3.8909 x 10^911 |
3,600 | 2.9681 x 10^917 | 2.3350 x 10^923 | 1.8941 x 10^929 | 1.5843 x 10^935 | 1.3662 x 10^941 | 1.2146 x 10^947 | 1.1131 x 10^953 | 1.0516 x 10^959 | 1.0239 x 10^965 | 1.0275 x 10^971 |
3,700 | 1.0626 x 10^977 | 1.1324 x 10^983 | 1.2436 x 10^989 | 1.4070 x 10^995 | 1.6401 x 10^1001 | 1.9695 x 10^1007 | 2.4363 x 10^1013 | 3.1043 x 10^1019 | 4.0739 x 10^1025 | 5.5063 x 10^1031 |
3,800 | 7.6644 x 10^1037 | 1.0985 x 10^1044 | 1.6213 x 10^1050 | 2.4638 x 10^1056 | 3.8547 x 10^1062 | 6.2085 x 10^1068 | 1.0293 x 10^1075 | 1.7567 x 10^1081 | 3.0860 x 10^1087 | 5.5792 x 10^1093 |
3,900 | 1.0380 x 10^1100 | 1.9876 x 10^1106 | 3.9160 x 10^1112 | 7.9388 x 10^1118 | 1.6558 x 10^1125 | 3.5533 x 10^1131 | 7.8442 x 10^1137 | 1.7813 x 10^1144 | 4.1609 x 10^1150 | 9.9969 x 10^1156 |
4,000 | 2.4702 x 10^1163 | 6.2774 x 10^1169 | 1.6404 x 10^1176 | 4.4084 x 10^1182 | 1.2181 x 10^1189 | 3.4605 x 10^1195 | 1.0107 x 10^1202 | 3.0351 x 10^1208 | 9.3688 x 10^1214 | 2.9727 x 10^1221 |
4,100 | 9.6954 x 10^1227 | 3.2500 x 10^1234 | 1.1196 x 10^1241 | 3.9642 x 10^1247 | 1.4423 x 10^1254 | 5.3922 x 10^1260 | 2.0714 x 10^1267 | 8.1757 x 10^1273 | 3.3153 x 10^1280 | 1.3811 x 10^1287 |
4,200 | 5.9105 x 10^1293 | 2.5982 x 10^1300 | 1.1732 x 10^1307 | 5.4411 x 10^1313 | 2.5917 x 10^1320 | 1.2678 x 10^1327 | 6.3691 x 10^1333 | 3.2855 x 10^1340 | 1.7403 x 10^1347 | 9.4655 x 10^1353 |
4,300 | 5.2856 x 10^1360 | 3.0302 x 10^1367 | 1.7834 x 10^1374 | 1.0775 x 10^1381 | 6.6827 x 10^1387 | 4.2541 x 10^1394 | 2.7796 x 10^1401 | 1.8639 x 10^1408 | 1.2828 x 10^1415 | 9.0604 x 10^1421 |
4,400 | 6.5666 x 10^1428 | 4.8836 x 10^1435 | 3.7267 x 10^1442 | 2.9178 x 10^1449 | 2.3438 x 10^1456 | 1.9316 x 10^1463 | 1.6330 x 10^1470 | 1.4162 x 10^1477 | 1.2599 x 10^1484 | 1.1496 x 10^1491 |
4,500 | 1.0760 x 10^1498 | 1.0328 x 10^1505 | 1.0167 x 10^1512 | 1.0264 x 10^1519 | 1.0626 x 10^1526 | 1.1281 x 10^1533 | 1.2280 x 10^1540 | 1.3705 x 10^1547 | 1.5683 x 10^1554 | 1.8399 x 10^1561 |
4,600 | 2.2129 x 10^1568 | 2.7285 x 10^1575 | 3.4485 x 10^1582 | 4.4676 x 10^1589 | 5.9325 x 10^1596 | 8.0744 x 10^1603 | 1.1263 x 10^1611 | 1.6101 x 10^1618 | 2.3589 x 10^1625 | 3.5415 x 10^1632 |
4,700 | 5.4484 x 10^1639 | 8.5889 x 10^1646 | 1.3872 x 10^1654 | 2.2958 x 10^1661 | 3.8925 x 10^1668 | 6.7614 x 10^1675 | 1.2031 x 10^1683 | 2.1933 x 10^1690 | 4.0955 x 10^1697 | 7.8336 x 10^1704 |
4,800 | 1.5347 x 10^1712 | 3.0795 x 10^1719 | 6.3288 x 10^1726 | 1.3320 x 10^1734 | 2.8711 x 10^1741 | 6.3373 x 10^1748 | 1.4324 x 10^1756 | 3.3152 x 10^1763 | 7.8566 x 10^1770 | 1.9063 x 10^1778 |
4,900 | 4.7359 x 10^1785 | 1.2045 x 10^1793 | 3.1364 x 10^1800 | 8.3603 x 10^1807 | 2.2812 x 10^1815 | 6.3721 x 10^1822 | 1.8218 x 10^1830 | 5.3315 x 10^1837 | 1.5969 x 10^1845 | 4.8954 x 10^1852 |
5,000 | 1.5358 x 10^1860 | 4.9313 x 10^1867 | 1.6203 x 10^1875 | 5.4481 x 10^1882 | 1.8744 x 10^1890 | 6.5992 x 10^1897 | 2.3771 x 10^1905 | 8.7613 x 10^1912 | 3.3037 x 10^1920 | 1.2745 x 10^1928 |
5,100 | 5.0302 x 10^1935 | 2.0309 x 10^1943 | 8.3883 x 10^1950 | 3.5439 x 10^1958 | 1.5315 x 10^1966 | 6.7700 x 10^1973 | 3.0608 x 10^1981 | 1.4153 x 10^1989 | 6.6937 x 10^1996 | 3.2375 x 10^2004 |
5,200 | 1.6013 x 10^2012 | 8.0999 x 10^2019 | 4.1896 x 10^2027 | 2.2159 x 10^2035 | 1.1984 x 10^2043 | 6.6268 x 10^2050 | 3.7467 x 10^2058 | 2.1657 x 10^2066 | 1.2799 x 10^2074 | 7.7332 x 10^2081 |
5,300 | 4.7765 x 10^2089 | 3.0159 x 10^2097 | 1.9466 x 10^2105 | 1.2843 x 10^2113 | 8.6613 x 10^2120 | 5.9703 x 10^2128 | 4.2063 x 10^2136 | 3.0289 x 10^2144 | 2.2290 x 10^2152 | 1.6765 x 10^2160 |
5,400 | 1.2886 x 10^2168 | 1.0121 x 10^2176 | 8.1243 x 10^2183 | 6.6635 x 10^2191 | 5.5847 x 10^2199 | 4.7824 x 10^2207 | 4.1845 x 10^2215 | 3.7408 x 10^2223 | 3.4167 x 10^2231 | 3.1883 x 10^2239 |
5,500 | 3.0394 x 10^2247 | 2.9600 x 10^2255 | 2.9448 x 10^2263 | 2.9928 x 10^2271 | 3.1069 x 10^2279 | 3.2945 x 10^2287 | 3.5683 x 10^2295 | 3.9475 x 10^2303 | 4.4603 x 10^2311 | 5.1472 x 10^2319 |
5,600 | 6.0663 x 10^2327 | 7.3017 x 10^2335 | 8.9751 x 10^2343 | 1.1266 x 10^2352 | 1.4441 x 10^2360 | 1.8902 x 10^2368 | 2.5263 x 10^2376 | 3.4477 x 10^2384 | 4.8041 x 10^2392 | 6.8349 x 10^2400 |
5,700 | 9.9282 x 10^2408 | 1.4723 x 10^2417 | 2.2292 x 10^2425 | 3.4456 x 10^2433 | 5.4369 x 10^2441 | 8.7576 x 10^2449 | 1.4400 x 10^2458 | 2.4170 x 10^2466 | 4.1410 x 10^2474 | 7.2416 x 10^2482 |
5,800 | 1.2925 x 10^2491 | 2.3548 x 10^2499 | 4.3785 x 10^2507 | 8.3090 x 10^2515 | 1.6092 x 10^2524 | 3.1805 x 10^2532 | 6.4153 x 10^2540 | 1.3204 x 10^2549 | 2.7736 x 10^2557 | 5.9447 x 10^2565 |
5,900 | 1.3001 x 10^2574 | 2.9014 x 10^2582 | 6.6064 x 10^2590 | 1.5348 x 10^2599 | 3.6381 x 10^2607 | 8.7983 x 10^2615 | 2.1708 x 10^2624 | 5.4642 x 10^2632 | 1.4031 x 10^2641 | 3.6757 x 10^2649 |
6,000 | 9.8228 x 10^2657 | 2.6777 x 10^2666 | 7.4460 x 10^2674 | 2.1120 x 10^2683 | 6.1104 x 10^2691 | 1.8031 x 10^2700 | 5.4274 x 10^2708 | 1.6661 x 10^2717 | 5.2166 x 10^2725 | 1.6657 x 10^2734 |
6,100 | 5.4246 x 10^2742 | 1.8015 x 10^2751 | 6.1017 x 10^2759 | 2.1074 x 10^2768 | 7.4224 x 10^2776 | 2.6657 x 10^2785 | 9.7624 x 10^2793 | 3.6454 x 10^2802 | 1.3880 x 10^2811 | 5.3886 x 10^2819 |
6,200 | 2.1329 x 10^2828 | 8.6080 x 10^2836 | 3.5418 x 10^2845 | 1.4857 x 10^2854 | 6.3539 x 10^2862 | 2.7701 x 10^2871 | 1.2312 x 10^2880 | 5.5785 x 10^2888 | 2.5765 x 10^2897 | 1.2130 x 10^2906 |
6,300 | 5.8216 x 10^2914 | 2.8478 x 10^2923 | 1.4200 x 10^2932 | 7.2168 x 10^2940 | 3.7383 x 10^2949 | 1.9736 x 10^2958 | 1.0620 x 10^2967 | 5.8241 x 10^2975 | 3.2551 x 10^2984 | 1.8540 x 10^2993 |
6,400 | 1.0762 x 10^3002 | 6.3662 x 10^3010 | 3.8375 x 10^3019 | 2.3573 x 10^3028 | 1.4755 x 10^3037 | 9.4112 x 10^3045 | 6.1164 x 10^3054 | 4.0503 x 10^3063 | 2.7328 x 10^3072 | 1.8787 x 10^3081 |
6,500 | 1.3159 x 10^3090 | 9.3911 x 10^3098 | 6.8279 x 10^3107 | 5.0575 x 10^3116 | 3.8165 x 10^3125 | 2.9340 x 10^3134 | 2.2978 x 10^3143 | 1.8332 x 10^3152 | 1.4898 x 10^3161 | 1.2334 x 10^3170 |
6,600 | 1.0401 x 10^3179 | 8.9348 x 10^3187 | 7.8175 x 10^3196 | 6.9670 x 10^3205 | 6.3242 x 10^3214 | 5.8470 x 10^3223 | 5.5058 x 10^3232 | 5.2803 x 10^3241 | 5.1575 x 10^3250 | 5.1305 x 10^3259 |
6,700 | 5.1975 x 10^3268 | 5.3623 x 10^3277 | 5.6340 x 10^3286 | 6.0280 x 10^3295 | 6.5677 x 10^3304 | 7.2868 x 10^3313 | 8.2325 x 10^3322 | 9.4707 x 10^3331 | 1.1094 x 10^3341 | 1.3232 x 10^3350 |
6,800 | 1.6069 x 10^3359 | 1.9870 x 10^3368 | 2.5016 x 10^3377 | 3.2067 x 10^3386 | 4.1848 x 10^3395 | 5.5602 x 10^3404 | 7.5211 x 10^3413 | 1.0357 x 10^3423 | 1.4520 x 10^3432 | 2.0722 x 10^3441 |
6,900 | 3.0107 x 10^3450 | 4.4527 x 10^3459 | 6.7037 x 10^3468 | 1.0273 x 10^3478 | 1.6026 x 10^3487 | 2.5448 x 10^3496 | 4.1132 x 10^3505 | 6.7667 x 10^3514 | 1.1330 x 10^3524 | 1.9310 x 10^3533 |
7,000 | 3.3496 x 10^3542 | 5.9136 x 10^3551 | 1.0625 x 10^3561 | 1.9430 x 10^3570 | 3.6161 x 10^3579 | 6.8489 x 10^3588 | 1.3201 x 10^3598 | 2.5894 x 10^3607 | 5.1687 x 10^3616 | 1.0499 x 10^3626 |
7,100 | 2.1701 x 10^3635 | 4.5646 x 10^3644 | 9.7696 x 10^3653 | 2.1276 x 10^3663 | 4.7149 x 10^3672 | 1.0631 x 10^3682 | 2.4390 x 10^3691 | 5.6934 x 10^3700 | 1.3522 x 10^3710 | 3.2675 x 10^3719 |
7,200 | 8.0332 x 10^3728 | 2.0093 x 10^3738 | 5.1131 x 10^3747 | 1.3237 x 10^3757 | 3.4864 x 10^3766 | 9.3414 x 10^3775 | 2.5462 x 10^3785 | 7.0603 x 10^3794 | 1.9915 x 10^3804 | 5.7144 x 10^3813 |
7,300 | 1.6679 x 10^3823 | 4.9522 x 10^3832 | 1.4956 x 10^3842 | 4.5945 x 10^3851 | 1.4356 x 10^3861 | 4.5627 x 10^3870 | 1.4749 x 10^3880 | 4.8496 x 10^3889 | 1.6217 x 10^3899 | 5.5160 x 10^3908 |
7,400 | 1.9081 x 10^3918 | 6.7130 x 10^3927 | 2.4019 x 10^3937 | 8.7401 x 10^3946 | 3.2343 x 10^3956 | 1.2172 x 10^3966 | 4.6585 x 10^3975 | 1.8131 x 10^3985 | 7.1759 x 10^3994 | 2.8880 x 10^4004 |
7,500 | 1.1819 x 10^4014 | 4.9189 x 10^4023 | 2.0815 x 10^4033 | 8.9569 x 10^4042 | 3.9189 x 10^4052 | 1.7434 x 10^4062 | 7.8863 x 10^4071 | 3.6271 x 10^4081 | 1.6961 x 10^4091 | 8.0642 x 10^4100 |
7,600 | 3.8982 x 10^4110 | 1.9158 x 10^4120 | 9.5728 x 10^4129 | 4.8628 x 10^4139 | 2.5114 x 10^4149 | 1.3185 x 10^4159 | 7.0380 x 10^4168 | 3.8189 x 10^4178 | 2.1066 x 10^4188 | 1.1812 x 10^4198 |
7,700 | 6.7338 x 10^4207 | 3.9019 x 10^4217 | 2.2983 x 10^4227 | 1.3761 x 10^4237 | 8.3756 x 10^4246 | 5.1816 x 10^4256 | 3.2583 x 10^4266 | 2.0826 x 10^4276 | 1.3530 x 10^4286 | 8.9341 x 10^4295 |
7,800 | 5.9961 x 10^4305 | 4.0902 x 10^4315 | 2.8357 x 10^4325 | 1.9981 x 10^4335 | 1.4309 x 10^4345 | 1.0414 x 10^4355 | 7.7037 x 10^4364 | 5.7911 x 10^4374 | 4.4242 x 10^4384 | 3.4348 x 10^4394 |
7,900 | 2.7100 x 10^4404 | 2.1729 x 10^4414 | 1.7704 x 10^4424 | 1.4659 x 10^4434 | 1.2333 x 10^4444 | 1.0545 x 10^4454 | 9.1613 x 10^4463 | 8.0876 x 10^4473 | 7.2548 x 10^4483 | 6.6126 x 10^4493 |
8,000 | 6.1242 x 10^4503 | 5.7630 x 10^4513 | 5.5103 x 10^4523 | 5.3531 x 10^4533 | 5.2839 x 10^4543 | 5.2990 x 10^4553 | 5.3993 x 10^4563 | 5.5894 x 10^4573 | 5.8786 x 10^4583 | 6.2815 x 10^4593 |
8,100 | 6.8190 x 10^4603 | 7.5204 x 10^4613 | 8.4259 x 10^4623 | 9.5907 x 10^4633 | 1.1089 x 10^4644 | 1.3026 x 10^4654 | 1.5545 x 10^4664 | 1.8843 x 10^4674 | 2.3204 x 10^4684 | 2.9025 x 10^4694 |
8,200 | 3.6881 x 10^4704 | 4.7603 x 10^4714 | 6.2411 x 10^4724 | 8.3116 x 10^4734 | 1.1243 x 10^4745 | 1.5448 x 10^4755 | 2.1559 x 10^4765 | 3.0560 x 10^4775 | 4.4000 x 10^4785 | 6.4343 x 10^4795 |
8,300 | 9.5566 x 10^4805 | 1.4416 x 10^4816 | 2.2086 x 10^4826 | 3.4367 x 10^4836 | 5.4312 x 10^4846 | 8.7169 x 10^4856 | 1.4208 x 10^4867 | 2.3520 x 10^4877 | 3.9541 x 10^4887 | 6.7507 x 10^4897 |
8,400 | 1.1704 x 10^4908 | 2.0607 x 10^4918 | 3.6846 x 10^4928 | 6.6901 x 10^4938 | 1.2335 x 10^4949 | 2.3095 x 10^4959 | 4.3911 x 10^4969 | 8.4775 x 10^4979 | 1.6619 x 10^4990 | 3.3082 x 10^5000 |
8,500 | 6.6870 x 10^5010 | 1.3724 x 10^5021 | 2.8600 x 10^5031 | 6.0518 x 10^5041 | 1.3002 x 10^5052 | 2.8363 x 10^5062 | 6.2819 x 10^5072 | 1.4126 x 10^5083 | 3.2253 x 10^5093 | 7.4766 x 10^5103 |
8,600 | 1.7596 x 10^5114 | 4.2044 x 10^5124 | 1.0199 x 10^5135 | 2.5119 x 10^5145 | 6.2805 x 10^5155 | 1.5942 x 10^5166 | 4.1082 x 10^5176 | 1.0747 x 10^5187 | 2.8543 x 10^5197 | 7.6954 x 10^5207 |
8,700 | 2.1061 x 10^5218 | 5.8517 x 10^5228 | 1.6504 x 10^5239 | 4.7251 x 10^5249 | 1.3732 x 10^5260 | 4.0513 x 10^5270 | 1.2132 x 10^5281 | 3.6878 x 10^5291 | 1.1378 x 10^5302 | 3.5638 x 10^5312 |
8,800 | 1.1329 x 10^5323 | 3.6557 x 10^5333 | 1.1973 x 10^5344 | 3.9802 x 10^5354 | 1.3429 x 10^5365 | 4.5992 x 10^5375 | 1.5986 x 10^5386 | 5.6398 x 10^5396 | 2.0193 x 10^5407 | 7.3384 x 10^5417 |
8,900 | 2.7065 x 10^5428 | 1.0131 x 10^5439 | 3.8487 x 10^5449 | 1.4838 x 10^5460 | 5.8060 x 10^5470 | 2.3055 x 10^5481 | 9.2909 x 10^5491 | 3.7996 x 10^5502 | 1.5769 x 10^5513 | 6.6418 x 10^5523 |
9,000 | 2.8387 x 10^5534 | 1.2312 x 10^5545 | 5.4193 x 10^5555 | 2.4205 x 10^5566 | 1.0970 x 10^5577 | 5.0455 x 10^5587 | 2.3547 x 10^5598 | 1.1150 x 10^5609 | 5.3583 x 10^5619 | 2.6127 x 10^5630 |
9,100 | 1.2926 x 10^5641 | 6.4894 x 10^5651 | 3.3056 x 10^5662 | 1.7085 x 10^5673 | 8.9597 x 10^5683 | 4.7674 x 10^5694 | 2.5738 x 10^5705 | 1.4098 x 10^5716 | 7.8355 x 10^5726 | 4.4182 x 10^5737 |
9,200 | 2.5277 x 10^5748 | 1.4671 x 10^5759 | 8.6399 x 10^5769 | 5.1619 x 10^5780 | 3.1288 x 10^5791 | 1.9241 x 10^5802 | 1.2004 x 10^5813 | 7.5976 x 10^5823 | 4.8784 x 10^5834 | 3.1778 x 10^5845 |
9,300 | 2.1000 x 10^5856 | 1.4078 x 10^5867 | 9.5745 x 10^5877 | 6.6055 x 10^5888 | 4.6230 x 10^5899 | 3.2821 x 10^5910 | 2.3638 x 10^5921 | 1.7269 x 10^5932 | 1.2797 x 10^5943 | 9.6208 x 10^5953 |
9,400 | 7.3363 x 10^5964 | 5.6746 x 10^5975 | 4.4523 x 10^5986 | 3.5434 x 10^5997 | 2.8604 x 10^6008 | 2.3422 x 10^6019 | 1.9453 x 10^6030 | 1.6387 x 10^6041 | 1.4002 x 10^6052 | 1.2135 x 10^6063 |
9,500 | 1.0667 x 10^6074 | 9.5112 x 10^6084 | 8.6008 x 10^6095 | 7.8884 x 10^6106 | 7.3379 x 10^6117 | 6.9229 x 10^6128 | 6.6243 x 10^6139 | 6.4285 x 10^6150 | 6.3271 x 10^6161 | 6.3156 x 10^6172 |
9,600 | 6.3935 x 10^6183 | 6.5640 x 10^6194 | 6.8345 x 10^6205 | 7.2168 x 10^6216 | 7.7282 x 10^6227 | 8.3927 x 10^6238 | 9.2431 x 10^6249 | 1.0323 x 10^6261 | 1.1692 x 10^6272 | 1.3429 x 10^6283 |
9,700 | 1.5641 x 10^6294 | 1.8474 x 10^6305 | 2.2127 x 10^6316 | 2.6874 x 10^6327 | 3.3099 x 10^6338 | 4.1337 x 10^6349 | 5.2349 x 10^6360 | 6.7224 x 10^6371 | 8.7535 x 10^6382 | 1.1557 x 10^6394 |
9,800 | 1.5473 x 10^6405 | 2.1006 x 10^6416 | 2.8915 x 10^6427 | 4.0357 x 10^6438 | 5.7113 x 10^6449 | 8.1952 x 10^6460 | 1.1923 x 10^6472 | 1.7588 x 10^6483 | 2.6306 x 10^6494 | 3.9893 x 10^6505 |
9,900 | 6.1338 x 10^6516 | 9.5620 x 10^6527 | 1.5113 x 10^6539 | 2.4217 x 10^6550 | 3.9345 x 10^6561 | 6.4808 x 10^6572 | 1.0822 x 10^6584 | 1.8323 x 10^6595 | 3.1451 x 10^6606 | 5.4731 x 10^6617 |
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | |
---|---|---|---|---|---|---|---|---|---|---|
10,000 | 9.6557 x 10^6628 | 1.7269 x 10^6640 | 3.1313 x 10^6651 | 5.7560 x 10^6662 | 1.0726 x 10^6674 | 2.0263 x 10^6685 | 3.8807 x 10^6696 | 7.5343 x 10^6707 | 1.4828 x 10^6719 | 2.9585 x 10^6730 |
10,100 | 5.9836 x 10^6741 | 1.2267 x 10^6753 | 2.5497 x 10^6764 | 5.3717 x 10^6775 | 1.1472 x 10^6787 | 2.4835 x 10^6798 | 5.4499 x 10^6809 | 1.2122 x 10^6821 | 2.7334 x 10^6832 | 6.2474 x 10^6843 |
10,200 | 1.4473 x 10^6855 | 3.3987 x 10^6866 | 8.0899 x 10^6877 | 1.9518 x 10^6889 | 4.7731 x 10^6900 | 1.1831 x 10^6912 | 2.9724 x 10^6923 | 7.5692 x 10^6934 | 1.9536 x 10^6946 | 5.1108 x 10^6957 |
10,300 | 1.3551 x 10^6969 | 3.6418 x 10^6980 | 9.9197 x 10^6991 | 2.7384 x 10^7003 | 7.6621 x 10^7014 | 2.1728 x 10^7026 | 6.2448 x 10^7037 | 1.8190 x 10^7049 | 5.3700 x 10^7060 | 1.6066 x 10^7072 |
10,400 | 4.8718 x 10^7083 | 1.4971 x 10^7095 | 4.6627 x 10^7106 | 1.4717 x 10^7118 | 4.7076 x 10^7129 | 1.5260 x 10^7141 | 5.0134 x 10^7152 | 1.6691 x 10^7164 | 5.6315 x 10^7175 | 1.9254 x 10^7187 |
10,500 | 6.6717 x 10^7198 | 2.3426 x 10^7210 | 8.3359 x 10^7221 | 3.0058 x 10^7233 | 1.0983 x 10^7245 | 4.0670 x 10^7256 | 1.5260 x 10^7268 | 5.8025 x 10^7279 | 2.2357 x 10^7291 | 8.7291 x 10^7302 |
10,600 | 3.4535 x 10^7314 | 1.3845 x 10^7326 | 5.6244 x 10^7337 | 2.3152 x 10^7349 | 9.6568 x 10^7360 | 4.0814 x 10^7372 | 1.7478 x 10^7384 | 7.5845 x 10^7395 | 3.3348 x 10^7407 | 1.4856 x 10^7419 |
10,700 | 6.7065 x 10^7430 | 3.0674 x 10^7442 | 1.4215 x 10^7454 | 6.6750 x 10^7465 | 3.1757 x 10^7477 | 1.5308 x 10^7489 | 7.4768 x 10^7500 | 3.6999 x 10^7512 | 1.8550 x 10^7524 | 9.4232 x 10^7535 |
10,800 | 4.8498 x 10^7547 | 2.5289 x 10^7559 | 1.3360 x 10^7571 | 7.1510 x 10^7582 | 3.8778 x 10^7594 | 2.1305 x 10^7606 | 1.1858 x 10^7618 | 6.6873 x 10^7629 | 3.8205 x 10^7641 | 2.2113 x 10^7653 |
10,900 | 1.2966 x 10^7665 | 7.7028 x 10^7676 | 4.6357 x 10^7688 | 2.8263 x 10^7700 | 1.7457 x 10^7712 | 1.0923 x 10^7724 | 6.9244 x 10^7735 | 4.4467 x 10^7747 | 2.8927 x 10^7759 | 1.9064 x 10^7771 |
11,000 | 1.2727 x 10^7783 | 8.6075 x 10^7794 | 5.8970 x 10^7806 | 4.0926 x 10^7818 | 2.8772 x 10^7830 | 2.0491 x 10^7842 | 1.4782 x 10^7854 | 1.0803 x 10^7866 | 7.9971 x 10^7877 | 5.9967 x 10^7889 |
11,100 | 4.5549 x 10^7901 | 3.5047 x 10^7913 | 2.7314 x 10^7925 | 2.1564 x 10^7937 | 1.7244 x 10^7949 | 1.3968 x 10^7961 | 1.1460 x 10^7973 | 9.5244 x 10^7984 | 8.0176 x 10^7996 | 6.8363 x 10^8008 |
11,200 | 5.9041 x 10^8020 | 5.1648 x 10^8032 | 4.5762 x 10^8044 | 4.1069 x 10^8056 | 3.7332 x 10^8068 | 3.4371 x 10^8080 | 3.2052 x 10^8092 | 3.0273 x 10^8104 | 2.8960 x 10^8116 | 2.8060 x 10^8128 |
11,300 | 2.7536 x 10^8140 | 2.7369 x 10^8152 | 2.7551 x 10^8164 | 2.8090 x 10^8176 | 2.9005 x 10^8188 | 3.0335 x 10^8200 | 3.2130 x 10^8212 | 3.4467 x 10^8224 | 3.7447 x 10^8236 | 4.1203 x 10^8248 |
11,400 | 4.5915 x 10^8260 | 5.1819 x 10^8272 | 5.9228 x 10^8284 | 6.8559 x 10^8296 | 8.0370 x 10^8308 | 9.5417 x 10^8320 | 1.1472 x 10^8333 | 1.3968 x 10^8345 | 1.7224 x 10^8357 | 2.1510 x 10^8369 |
11,500 | 2.7202 x 10^8381 | 3.4837 x 10^8393 | 4.5182 x 10^8405 | 5.9342 x 10^8417 | 7.8928 x 10^8429 | 1.0630 x 10^8442 | 1.4500 x 10^8454 | 2.0028 x 10^8466 | 2.8013 x 10^8478 | 3.9678 x 10^8490 |
11,600 | 5.6910 x 10^8502 | 8.2659 x 10^8514 | 1.2157 x 10^8527 | 1.8106 x 10^8539 | 2.7307 x 10^8551 | 4.1702 x 10^8563 | 6.4488 x 10^8575 | 1.0098 x 10^8588 | 1.6012 x 10^8600 | 2.5708 x 10^8612 |
11,700 | 4.1796 x 10^8624 | 6.8807 x 10^8636 | 1.1469 x 10^8649 | 1.9359 x 10^8661 | 3.3086 x 10^8673 | 5.7258 x 10^8685 | 1.0033 x 10^8698 | 1.7800 x 10^8710 | 3.1978 x 10^8722 | 5.8169 x 10^8734 |
11,800 | 1.0713 x 10^8747 | 1.9978 x 10^8759 | 3.7723 x 10^8771 | 7.2118 x 10^8783 | 1.3959 x 10^8796 | 2.7359 x 10^8808 | 5.4291 x 10^8820 | 1.0907 x 10^8833 | 2.2189 x 10^8845 | 4.5700 x 10^8857 |
11,900 | 9.5297 x 10^8869 | 2.0119 x 10^8882 | 4.3007 x 10^8894 | 9.3076 x 10^8906 | 2.0394 x 10^8919 | 4.5242 x 10^8931 | 1.0161 x 10^8944 | 2.3105 x 10^8956 | 5.3193 x 10^8968 | 1.2397 x 10^8981 |
12,000 | 2.9255 x 10^8993 | 6.9889 x 10^9005 | 1.6903 x 10^9018 | 4.1389 x 10^9030 | 1.0260 x 10^9043 | 2.5749 x 10^9055 | 6.5421 x 10^9067 | 1.6827 x 10^9080 | 4.3818 x 10^9092 | 1.1551 x 10^9105 |
12,100 | 3.0827 x 10^9117 | 8.3288 x 10^9129 | 2.2780 x 10^9142 | 6.3075 x 10^9154 | 1.7680 x 10^9167 | 5.0170 x 10^9179 | 1.4411 x 10^9192 | 4.1909 x 10^9204 | 1.2337 x 10^9217 | 3.6766 x 10^9229 |
12,200 | 1.1091 x 10^9242 | 3.3872 x 10^9254 | 1.0471 x 10^9267 | 3.2770 x 10^9279 | 1.0381 x 10^9292 | 3.3290 x 10^9304 | 1.0806 x 10^9317 | 3.5511 x 10^9329 | 1.1812 x 10^9342 | 3.9773 x 10^9354 |
12,300 | 1.3556 x 10^9367 | 4.6771 x 10^9379 | 1.6334 x 10^9392 | 5.7745 x 10^9404 | 2.0663 x 10^9417 | 7.4848 x 10^9429 | 2.7443 x 10^9442 | 1.0185 x 10^9455 | 3.8261 x 10^9467 | 1.4549 x 10^9480 |
12,400 | 5.5999 x 10^9492 | 2.1816 x 10^9505 | 8.6034 x 10^9517 | 3.4340 x 10^9530 | 1.3874 x 10^9543 | 5.6737 x 10^9555 | 2.3484 x 10^9568 | 9.8392 x 10^9580 | 4.1724 x 10^9593 | 1.7908 x 10^9606 |
12,500 | 7.7802 x 10^9618 | 3.4210 x 10^9631 | 1.5225 x 10^9644 | 6.8586 x 10^9656 | 3.1270 x 10^9669 | 1.4430 x 10^9682 | 6.7399 x 10^9694 | 3.1861 x 10^9707 | 1.5244 x 10^9720 | 7.3821 x 10^9732 |
12,600 | 3.6181 x 10^9745 | 1.7947 x 10^9758 | 9.0108 x 10^9770 | 4.5786 x 10^9783 | 2.3547 x 10^9796 | 1.2256 x 10^9809 | 6.4562 x 10^9821 | 3.4421 x 10^9834 | 1.8573 x 10^9847 | 1.0142 x 10^9860 |
12,700 | 5.6057 x 10^9872 | 3.1355 x 10^9885 | 1.7750 x 10^9898 | 1.0169 x 10^9911 | 5.8964 x 10^9923 | 3.4600 x 10^9936 | 2.0548 x 10^9949 | 1.2349 x 10^9962 | 7.5115 x 10^9974 | 4.6237 x 10^9987 |
12,800 | 2.8804 x 10^10000 | 1.8159 x 10^10013 | 1.1585 x 10^10026 | 7.4806 x 10^10038 | 4.8880 x 10^10051 | 3.2323 x 10^10064 | 2.1630 x 10^10077 | 1.4648 x 10^10090 | 1.0039 x 10^10103 | 6.9625 x 10^10115 |
12,900 | 4.8867 x 10^10128 | 3.4708 x 10^10141 | 2.4946 x 10^10154 | 1.8144 x 10^10167 | 1.3355 x 10^10180 | 9.9479 x 10^10192 | 7.4982 x 10^10205 | 5.7193 x 10^10218 | 4.4145 x 10^10231 | 3.4481 x 10^10244 |
13,000 | 2.7254 x 10^10257 | 2.1798 x 10^10270 | 1.7643 x 10^10283 | 1.4449 x 10^10296 | 1.1975 x 10^10309 | 1.0043 x 10^10322 | 8.5232 x 10^10334 | 7.3192 x 10^10347 | 6.3600 x 10^10360 | 5.5923 x 10^10373 |
13,100 | 4.9758 x 10^10386 | 4.4798 x 10^10399 | 4.0812 x 10^10412 | 3.7622 x 10^10425 | 3.5094 x 10^10438 | 3.3124 x 10^10451 | 3.1636 x 10^10464 | 3.0573 x 10^10477 | 2.9896 x 10^10490 | 2.9580 x 10^10503 |
13,200 | 2.9615 x 10^10516 | 3.0001 x 10^10529 | 3.0752 x 10^10542 | 3.1895 x 10^10555 | 3.3472 x 10^10568 | 3.5543 x 10^10581 | 3.8188 x 10^10594 | 4.1515 x 10^10607 | 4.5665 x 10^10620 | 5.0823 x 10^10633 |
13,300 | 5.7233 x 10^10646 | 6.5211 x 10^10659 | 7.5179 x 10^10672 | 8.7694 x 10^10685 | 1.0349 x 10^10699 | 1.2358 x 10^10712 | 1.4932 x 10^10725 | 1.8253 x 10^10738 | 2.2577 x 10^10751 | 2.8253 x 10^10764 |
13,400 | 3.5772 x 10^10777 | 4.5826 x 10^10790 | 5.9395 x 10^10803 | 7.7889 x 10^10816 | 1.0334 x 10^10830 | 1.3872 x 10^10843 | 1.8840 x 10^10856 | 2.5888 x 10^10869 | 3.5990 x 10^10882 | 5.0622 x 10^10895 |
13,500 | 7.2038 x 10^10908 | 1.0371 x 10^10922 | 1.5107 x 10^10935 | 2.2264 x 10^10948 | 3.3195 x 10^10961 | 5.0072 x 10^10974 | 7.6416 x 10^10987 | 1.1798 x 10^11001 | 1.8429 x 10^11014 | 2.9125 x 10^11027 |
13,600 | 4.6565 x 10^11040 | 7.5320 x 10^11053 | 1.2325 x 10^11067 | 2.0405 x 10^11080 | 3.4177 x 10^11093 | 5.7911 x 10^11106 | 9.9273 x 10^11119 | 1.7216 x 10^11133 | 3.0205 x 10^11146 | 5.3613 x 10^11159 |
13,700 | 9.6270 x 10^11172 | 1.7488 x 10^11186 | 3.2138 x 10^11199 | 5.9751 x 10^11212 | 1.1238 x 10^11226 | 2.1382 x 10^11239 | 4.1159 x 10^11252 | 8.0147 x 10^11265 | 1.5788 x 10^11279 | 3.1463 x 10^11292 |
13,800 | 6.3430 x 10^11305 | 1.2936 x 10^11319 | 2.6689 x 10^11332 | 5.5702 x 10^11345 | 1.1760 x 10^11359 | 2.5119 x 10^11372 | 5.4273 x 10^11385 | 1.1862 x 10^11399 | 2.6228 x 10^11412 | 5.8665 x 10^11425 |
13,900 | 1.3273 x 10^11439 | 3.0381 x 10^11452 | 7.0345 x 10^11465 | 1.6476 x 10^11479 | 3.9037 x 10^11492 | 9.3561 x 10^11505 | 2.2683 x 10^11519 | 5.5632 x 10^11532 | 1.3801 x 10^11546 | 3.4636 x 10^11559 |
14,000 | 8.7928 x 10^11572 | 2.2579 x 10^11586 | 5.8652 x 10^11599 | 1.5411 x 10^11613 | 4.0962 x 10^11626 | 1.1013 x 10^11640 | 2.9952 x 10^11653 | 8.2399 x 10^11666 | 2.2929 x 10^11680 | 6.4543 x 10^11693 |
14,100 | 1.8377 x 10^11707 | 5.2929 x 10^11720 | 1.5419 x 10^11734 | 4.5439 x 10^11747 | 1.3544 x 10^11761 | 4.0838 x 10^11774 | 1.2454 x 10^11788 | 3.8421 x 10^11801 | 1.1988 x 10^11815 | 3.7840 x 10^11828 |
14,200 | 1.2080 x 10^11842 | 3.9010 x 10^11855 | 1.2742 x 10^11869 | 4.2098 x 10^11882 | 1.4068 x 10^11896 | 4.7554 x 10^11909 | 1.6258 x 10^11923 | 5.6225 x 10^11936 | 1.9666 x 10^11950 | 6.9581 x 10^11963 |
14,300 | 2.4900 x 10^11977 | 9.0127 x 10^11990 | 3.2996 x 10^12004 | 1.2218 x 10^12018 | 4.5763 x 10^12031 | 1.7336 x 10^12045 | 6.6428 x 10^12058 | 2.5744 x 10^12072 | 1.0091 x 10^12086 | 4.0010 x 10^12099 |
14,400 | 1.6044 x 10^12113 | 6.5074 x 10^12126 | 2.6695 x 10^12140 | 1.1076 x 10^12154 | 4.6482 x 10^12167 | 1.9729 x 10^12181 | 8.4697 x 10^12194 | 3.6775 x 10^12208 | 1.6150 x 10^12222 | 7.1733 x 10^12235 |
14,500 | 3.2224 x 10^12249 | 1.4641 x 10^12263 | 6.7282 x 10^12276 | 3.1271 x 10^12290 | 1.4699 x 10^12304 | 6.9886 x 10^12317 | 3.3604 x 10^12331 | 1.6342 x 10^12345 | 8.0381 x 10^12358 | 3.9986 x 10^12372 |
14,600 | 2.0117 x 10^12386 | 1.0236 x 10^12400 | 5.2681 x 10^12413 | 2.7419 x 10^12427 | 1.4433 x 10^12441 | 7.6841 x 10^12454 | 4.1374 x 10^12468 | 2.2530 x 10^12482 | 1.2408 x 10^12496 | 6.9112 x 10^12509 |
14,700 | 3.8931 x 10^12523 | 2.2179 x 10^12537 | 1.2779 x 10^12551 | 7.4465 x 10^12564 | 4.3883 x 10^12578 | 2.6154 x 10^12592 | 1.5764 x 10^12606 | 9.6101 x 10^12619 | 5.9246 x 10^12633 | 3.6939 x 10^12647 |
14,800 | 2.3291 x 10^12661 | 1.4852 x 10^12675 | 9.5786 x 10^12688 | 6.2472 x 10^12702 | 4.1206 x 10^12716 | 2.7486 x 10^12730 | 1.8542 x 10^12744 | 1.2649 x 10^12758 | 8.7276 x 10^12771 | 6.0896 x 10^12785 |
14,900 | 4.2969 x 10^12799 | 3.0662 x 10^12813 | 2.2128 x 10^12827 | 1.6149 x 10^12841 | 1.1918 x 10^12855 | 8.8960 x 10^12868 | 6.7148 x 10^12882 | 5.1255 x 10^12896 | 3.9565 x 10^12910 | 3.0886 x 10^12924 |
15,000 | 2.4383 x 10^12938 | 1.9466 x 10^12952 | 1.5716 x 10^12966 | 1.2831 x 10^12980 | 1.0594 x 10^12994 | 8.8455 x 10^13007 | 7.4687 x 10^13021 | 6.3772 x 10^13035 | 5.5065 x 10^13049 | 4.8082 x 10^13063 |
15,100 | 4.2457 x 10^13077 | 3.7912 x 10^13091 | 3.4234 x 10^13105 | 3.1261 x 10^13119 | 2.8867 x 10^13133 | 2.6956 x 10^13147 | 2.5454 x 10^13161 | 2.4306 x 10^13175 | 2.3471 x 10^13189 | 2.2919 x 10^13203 |
15,200 | 2.2631 x 10^13217 | 2.2598 x 10^13231 | 2.2819 x 10^13245 | 2.3300 x 10^13259 | 2.4058 x 10^13273 | 2.5119 x 10^13287 | 2.6522 x 10^13301 | 2.8317 x 10^13315 | 3.0572 x 10^13329 | 3.3377 x 10^13343 |
15,300 | 3.6848 x 10^13357 | 4.1135 x 10^13371 | 4.6436 x 10^13385 | 5.3008 x 10^13399 | 6.1187 x 10^13413 | 7.1418 x 10^13427 | 8.4295 x 10^13441 | 1.0060 x 10^13456 | 1.2141 x 10^13470 | 1.4817 x 10^13484 |
15,400 | 1.8284 x 10^13498 | 2.2815 x 10^13512 | 2.8788 x 10^13526 | 3.6730 x 10^13540 | 4.7387 x 10^13554 | 6.1819 x 10^13568 | 8.1548 x 10^13582 | 1.0877 x 10^13597 | 1.4671 x 10^13611 | 2.0009 x 10^13625 |
15,500 | 2.7594 x 10^13639 | 3.8479 x 10^13653 | 5.4256 x 10^13667 | 7.7357 x 10^13681 | 1.1152 x 10^13696 | 1.6257 x 10^13710 | 2.3964 x 10^13724 | 3.5717 x 10^13738 | 5.3828 x 10^13752 | 8.2028 x 10^13766 |
15,600 | 1.2639 x 10^13781 | 1.9692 x 10^13795 | 3.1023 x 10^13809 | 4.9419 x 10^13823 | 7.9599 x 10^13837 | 1.2963 x 10^13852 | 2.1348 x 10^13866 | 3.5546 x 10^13880 | 5.9847 x 10^13894 | 1.0188 x 10^13909 |
15,700 | 1.7537 x 10^13923 | 3.0522 x 10^13937 | 5.3714 x 10^13951 | 9.5579 x 10^13965 | 1.7196 x 10^13980 | 3.1283 x 10^13994 | 5.7543 x 10^14008 | 1.0702 x 10^14023 | 2.0125 x 10^14037 | 3.8266 x 10^14051 |
15,800 | 7.3569 x 10^14065 | 1.4301 x 10^14080 | 2.8108 x 10^14094 | 5.5859 x 10^14108 | 1.1224 x 10^14123 | 2.2803 x 10^14137 | 4.6843 x 10^14151 | 9.7294 x 10^14165 | 2.0432 x 10^14180 | 4.3384 x 10^14194 |
15,900 | 9.3142 x 10^14208 | 2.0218 x 10^14223 | 4.4374 x 10^14237 | 9.8472 x 10^14251 | 2.2094 x 10^14266 | 5.0122 x 10^14280 | 1.1496 x 10^14295 | 2.6661 x 10^14309 | 6.2516 x 10^14323 | 1.4821 x 10^14338 |
16,000 | 3.5526 x 10^14352 | 8.6101 x 10^14366 | 2.1098 x 10^14381 | 5.2271 x 10^14395 | 1.3093 x 10^14410 | 3.3162 x 10^14424 | 8.4917 x 10^14438 | 2.1985 x 10^14453 | 5.7549 x 10^14467 | 1.5231 x 10^14482 |
16,100 | 4.0756 x 10^14496 | 1.1026 x 10^14511 | 3.0161 x 10^14525 | 8.3413 x 10^14539 | 2.3323 x 10^14554 | 6.5937 x 10^14568 | 1.8846 x 10^14583 | 5.4464 x 10^14597 | 1.5913 x 10^14612 | 4.7008 x 10^14626 |
16,200 | 1.4040 x 10^14641 | 4.2395 x 10^14655 | 1.2943 x 10^14670 | 3.9951 x 10^14684 | 1.2467 x 10^14699 | 3.9338 x 10^14713 | 1.2548 x 10^14728 | 4.0472 x 10^14742 | 1.3197 x 10^14757 | 4.3507 x 10^14771 |
16,300 | 1.4501 x 10^14786 | 4.8866 x 10^14800 | 1.6648 x 10^14815 | 5.7347 x 10^14829 | 1.9971 x 10^14844 | 7.0315 x 10^14858 | 2.5030 x 10^14873 | 9.0080 x 10^14887 | 3.2775 x 10^14902 | 1.2056 x 10^14917 |
16,400 | 4.4841 x 10^14931 | 1.6860 x 10^14946 | 6.4095 x 10^14960 | 2.4633 x 10^14975 | 9.5718 x 10^14989 | 3.7602 x 10^15004 | 1.4934 x 10^15019 | 5.9965 x 10^15033 | 2.4343 x 10^15048 | 9.9907 x 10^15062 |
16,500 | 4.1454 x 10^15077 | 1.7390 x 10^15092 | 7.3752 x 10^15106 | 3.1623 x 10^15121 | 1.3708 x 10^15136 | 6.0076 x 10^15150 | 2.6617 x 10^15165 | 1.1923 x 10^15180 | 5.3995 x 10^15194 | 2.4721 x 10^15209 |
16,600 | 1.1442 x 10^15224 | 5.3545 x 10^15238 | 2.5331 x 10^15253 | 1.2115 x 10^15268 | 5.8585 x 10^15282 | 2.8639 x 10^15297 | 1.4154 x 10^15312 | 7.0720 x 10^15326 | 3.5722 x 10^15341 | 1.8242 x 10^15356 |
16,700 | 9.4182 x 10^15370 | 4.9157 x 10^15385 | 2.5939 x 10^15400 | 1.3837 x 10^15415 | 7.4626 x 10^15429 | 4.0688 x 10^15444 | 2.2427 x 10^15459 | 1.2497 x 10^15474 | 7.0407 x 10^15488 | 4.0099 x 10^15503 |
16,800 | 2.3088 x 10^15518 | 1.3439 x 10^15533 | 7.9090 x 10^15547 | 4.7052 x 10^15562 | 2.8299 x 10^15577 | 1.7207 x 10^15592 | 1.0577 x 10^15607 | 6.5729 x 10^15621 | 4.1294 x 10^15636 | 2.6226 x 10^15651 |
16,900 | 1.6839 x 10^15666 | 1.0930 x 10^15681 | 7.1728 x 10^15695 | 4.7585 x 10^15710 | 3.1913 x 10^15725 | 2.1637 x 10^15740 | 1.4831 x 10^15755 | 1.0276 x 10^15770 | 7.1991 x 10^15784 | 5.0982 x 10^15799 |
17,000 | 3.6499 x 10^15814 | 2.6417 x 10^15829 | 1.9329 x 10^15844 | 1.4297 x 10^15859 | 1.0691 x 10^15874 | 8.0821 x 10^15888 | 6.1765 x 10^15903 | 4.7718 x 10^15918 | 3.7269 x 10^15933 | 2.9427 x 10^15948 |
17,100 | 2.3488 x 10^15963 | 1.8953 x 10^15978 | 1.5461 x 10^15993 | 1.2750 x 10^16008 | 1.0629 x 10^16023 | 8.9586 x 10^16037 | 7.6327 x 10^16052 | 6.5741 x 10^16067 | 5.7242 x 10^16082 | 5.0386 x 10^16097 |
17,200 | 4.4836 x 10^16112 | 4.0333 x 10^16127 | 3.6678 x 10^16142 | 3.3719 x 10^16157 | 3.1337 x 10^16172 | 2.9442 x 10^16187 | 2.7963 x 10^16202 | 2.6848 x 10^16217 | 2.6059 x 10^16232 | 2.5570 x 10^16247 |
17,300 | 2.5364 x 10^16262 | 2.5434 x 10^16277 | 2.5782 x 10^16292 | 2.6421 x 10^16307 | 2.7371 x 10^16322 | 2.8664 x 10^16337 | 3.0346 x 10^16352 | 3.2478 x 10^16367 | 3.5138 x 10^16382 | 3.8431 x 10^16397 |
17,400 | 4.2491 x 10^16412 | 4.7492 x 10^16427 | 5.3661 x 10^16442 | 6.1293 x 10^16457 | 7.0773 x 10^16472 | 8.2611 x 10^16487 | 9.7481 x 10^16502 | 1.1628 x 10^16518 | 1.4022 x 10^16533 | 1.7093 x 10^16548 |
17,500 | 2.1063 x 10^16563 | 2.6239 x 10^16578 | 3.3044 x 10^16593 | 4.2066 x 10^16608 | 5.4136 x 10^16623 | 7.0428 x 10^16638 | 9.2622 x 10^16653 | 1.2313 x 10^16669 | 1.6548 x 10^16684 | 2.2483 x 10^16699 |
17,600 | 3.0877 x 10^16714 | 4.2869 x 10^16729 | 6.0166 x 10^16744 | 8.5361 x 10^16759 | 1.2242 x 10^16775 | 1.7750 x 10^16790 | 2.6015 x 10^16805 | 3.8543 x 10^16820 | 5.7728 x 10^16835 | 8.7403 x 10^16850 |
17,700 | 1.3377 x 10^16866 | 2.0697 x 10^16881 | 3.2371 x 10^16896 | 5.1182 x 10^16911 | 8.1804 x 10^16926 | 1.3217 x 10^16942 | 2.1587 x 10^16957 | 3.5642 x 10^16972 | 5.9488 x 10^16987 | 1.0036 x 10^17003 |
17,800 | 1.7118 x 10^17018 | 2.9514 x 10^17033 | 5.1441 x 10^17048 | 9.0634 x 10^17063 | 1.6142 x 10^17079 | 2.9063 x 10^17094 | 5.2896 x 10^17109 | 9.7319 x 10^17124 | 1.8100 x 10^17140 | 3.4029 x 10^17155 |
17,900 | 6.4675 x 10^17170 | 1.2425 x 10^17186 | 2.4132 x 10^17201 | 4.7377 x 10^17216 | 9.4027 x 10^17231 | 1.8863 x 10^17247 | 3.8256 x 10^17262 | 7.8430 x 10^17277 | 1.6253 x 10^17293 | 3.4050 x 10^17308 |
18,000 | 7.2110 x 10^17323 | 1.5437 x 10^17339 | 3.3407 x 10^17354 | 7.3080 x 10^17369 | 1.6160 x 10^17385 | 3.6126 x 10^17400 | 8.1637 x 10^17415 | 1.8648 x 10^17431 | 4.3062 x 10^17446 | 1.0051 x 10^17462 |
18,100 | 2.3719 x 10^17477 | 5.6578 x 10^17492 | 1.3642 x 10^17508 | 3.3253 x 10^17523 | 8.1934 x 10^17538 | 2.0408 x 10^17554 | 5.1384 x 10^17569 | 1.3078 x 10^17585 | 3.3649 x 10^17600 | 8.7519 x 10^17615 |
18,200 | 2.3010 x 10^17631 | 6.1154 x 10^17646 | 1.6430 x 10^17662 | 4.4621 x 10^17677 | 1.2250 x 10^17693 | 3.3997 x 10^17708 | 9.5374 x 10^17723 | 2.7047 x 10^17739 | 7.7536 x 10^17754 | 2.2468 x 10^17770 |
18,300 | 6.5820 x 10^17785 | 1.9490 x 10^17801 | 5.8343 x 10^17816 | 1.7654 x 10^17832 | 5.4002 x 10^17847 | 1.6697 x 10^17863 | 5.2192 x 10^17878 | 1.6491 x 10^17894 | 5.2673 x 10^17909 | 1.7006 x 10^17925 |
18,400 | 5.5507 x 10^17940 | 1.8313 x 10^17956 | 6.1078 x 10^17971 | 2.0592 x 10^17987 | 7.0179 x 10^18002 | 2.4177 x 10^18018 | 8.4199 x 10^18033 | 2.9641 x 10^18049 | 1.0548 x 10^18065 | 3.7946 x 10^18080 |
18,500 | 1.3799 x 10^18096 | 5.0725 x 10^18111 | 1.8849 x 10^18127 | 7.0803 x 10^18142 | 2.6884 x 10^18158 | 1.0319 x 10^18174 | 4.0041 x 10^18189 | 1.5705 x 10^18205 | 6.2271 x 10^18220 | 2.4958 x 10^18236 |
18,600 | 1.0112 x 10^18252 | 4.1416 x 10^18267 | 1.7147 x 10^18283 | 7.1763 x 10^18298 | 3.0360 x 10^18314 | 1.2984 x 10^18330 | 5.6132 x 10^18345 | 2.4530 x 10^18361 | 1.0836 x 10^18377 | 4.8392 x 10^18392 |
18,700 | 2.1845 x 10^18408 | 9.9685 x 10^18423 | 4.5983 x 10^18439 | 2.1442 x 10^18455 | 1.0107 x 10^18471 | 4.8160 x 10^18486 | 2.3197 x 10^18502 | 1.1295 x 10^18518 | 5.5595 x 10^18533 | 2.7661 x 10^18549 |
18,800 | 1.3912 x 10^18565 | 7.0738 x 10^18580 | 3.6356 x 10^18596 | 1.8889 x 10^18612 | 9.9204 x 10^18627 | 5.2668 x 10^18643 | 2.8266 x 10^18659 | 1.5334 x 10^18675 | 8.4099 x 10^18690 | 4.6622 x 10^18706 |
18,900 | 2.6127 x 10^18722 | 1.4801 x 10^18738 | 8.4761 x 10^18753 | 4.9067 x 10^18769 | 2.8713 x 10^18785 | 1.6985 x 10^18801 | 1.0157 x 10^18817 | 6.1398 x 10^18832 | 3.7517 x 10^18848 | 2.3175 x 10^18864 |
19,000 | 1.4471 x 10^18880 | 9.1343 x 10^18895 | 5.8285 x 10^18911 | 3.7595 x 10^18927 | 2.4513 x 10^18943 | 1.6157 x 10^18959 | 1.0766 x 10^18975 | 7.2514 x 10^18990 | 4.9373 x 10^19006 | 3.3983 x 10^19022 |
19,100 | 2.3645 x 10^19038 | 1.6630 x 10^19054 | 1.1824 x 10^19070 | 8.4987 x 10^19085 | 6.1748 x 10^19101 | 4.5351 x 10^19117 | 3.3671 x 10^19133 | 2.5272 x 10^19149 | 1.9174 x 10^19165 | 1.4705 x 10^19181 |
19,200 | 1.1401 x 10^19197 | 8.9361 x 10^19212 | 7.0799 x 10^19228 | 5.6704 x 10^19244 | 4.5909 x 10^19260 | 3.7574 x 10^19276 | 3.1086 x 10^19292 | 2.5999 x 10^19308 | 2.1982 x 10^19324 | 1.8787 x 10^19340 |
19,300 | 1.6231 x 10^19356 | 1.4176 x 10^19372 | 1.2516 x 10^19388 | 1.1171 x 10^19404 | 1.0079 x 10^19420 | 9.1928 x 10^19435 | 8.4757 x 10^19451 | 7.8997 x 10^19467 | 7.4430 x 10^19483 | 7.0892 x 10^19499 |
19,400 | 6.8257 x 10^19515 | 6.6436 x 10^19531 | 6.5368 x 10^19547 | 6.5019 x 10^19563 | 6.5375 x 10^19579 | 6.6451 x 10^19595 | 6.8279 x 10^19611 | 7.0923 x 10^19627 | 7.4473 x 10^19643 | 7.9052 x 10^19659 |
19,500 | 8.4827 x 10^19675 | 9.2017 x 10^19691 | 1.0090 x 10^19708 | 1.1185 x 10^19724 | 1.2534 x 10^19740 | 1.4200 x 10^19756 | 1.6261 x 10^19772 | 1.8826 x 10^19788 | 2.2032 x 10^19804 | 2.6066 x 10^19820 |
19,600 | 3.1174 x 10^19836 | 3.7690 x 10^19852 | 4.6066 x 10^19868 | 5.6916 x 10^19884 | 7.1090 x 10^19900 | 8.9763 x 10^19916 | 1.1457 x 10^19933 | 1.4784 x 10^19949 | 1.9285 x 10^19965 | 2.5431 x 10^19981 |
19,700 | 3.3901 x 10^19997 | 4.5686 x 10^20013 | 6.2240 x 10^20029 | 8.5718 x 10^20045 | 1.1934 x 10^20062 | 1.6796 x 10^20078 | 2.3898 x 10^20094 | 3.4374 x 10^20110 | 4.9982 x 10^20126 | 7.3470 x 10^20142 |
19,800 | 1.0917 x 10^20159 | 1.6400 x 10^20175 | 2.4906 x 10^20191 | 3.8237 x 10^20207 | 5.9344 x 10^20223 | 9.3109 x 10^20239 | 1.4768 x 10^20256 | 2.3679 x 10^20272 | 3.8384 x 10^20288 | 6.2899 x 10^20304 |
19,900 | 1.0419 x 10^20321 | 1.7450 x 10^20337 | 2.9543 x 10^20353 | 5.0564 x 10^20369 | 8.7488 x 10^20385 | 1.5303 x 10^20402 | 2.7060 x 10^20418 | 4.8373 x 10^20434 | 8.7420 x 10^20450 | 1.5971 x 10^20467 |
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | |
---|---|---|---|---|---|---|---|---|---|---|
20,000 | 2.9498 x 10^20483 | 5.5077 x 10^20499 | 1.0396 x 10^20516 | 1.9838 x 10^20532 | 3.8271 x 10^20548 | 7.4638 x 10^20564 | 1.4715 x 10^20581 | 2.9330 x 10^20597 | 5.9101 x 10^20613 | 1.2039 x 10^20630 |
20,100 | 2.4793 x 10^20646 | 5.1617 x 10^20662 | 1.0864 x 10^20679 | 2.3116 x 10^20695 | 4.9724 x 10^20711 | 1.0813 x 10^20728 | 2.3772 x 10^20744 | 5.2836 x 10^20760 | 1.1872 x 10^20777 | 2.6967 x 10^20793 |
20,200 | 6.1930 x 10^20809 | 1.4377 x 10^20826 | 3.3746 x 10^20842 | 8.0073 x 10^20858 | 1.9208 x 10^20875 | 4.6582 x 10^20891 | 1.1420 x 10^20908 | 2.8307 x 10^20924 | 7.0934 x 10^20940 | 1.7969 x 10^20957 |
20,300 | 4.6022 x 10^20973 | 1.1916 x 10^20990 | 3.1192 x 10^21006 | 8.2546 x 10^21022 | 2.2084 x 10^21039 | 5.9733 x 10^21055 | 1.6334 x 10^21072 | 4.5155 x 10^21088 | 1.2620 x 10^21105 | 3.5659 x 10^21121 |
20,400 | 1.0186 x 10^21138 | 2.9418 x 10^21154 | 8.5893 x 10^21170 | 2.5353 x 10^21187 | 7.5661 x 10^21203 | 2.2827 x 10^21220 | 6.9627 x 10^21236 | 2.1471 x 10^21253 | 6.6939 x 10^21269 | 2.1098 x 10^21286 |
20,500 | 6.7232 x 10^21302 | 2.1659 x 10^21319 | 7.0546 x 10^21335 | 2.3230 x 10^21352 | 7.7336 x 10^21368 | 2.6029 x 10^21385 | 8.8572 x 10^21401 | 3.0471 x 10^21418 | 1.0598 x 10^21435 | 3.7267 x 10^21451 |
20,600 | 1.3248 x 10^21468 | 4.7620 x 10^21484 | 1.7304 x 10^21501 | 6.3574 x 10^21517 | 2.3613 x 10^21534 | 8.8676 x 10^21550 | 3.3667 x 10^21567 | 1.2923 x 10^21584 | 5.0151 x 10^21600 | 1.9677 x 10^21617 |
20,700 | 7.8056 x 10^21633 | 3.1305 x 10^21650 | 1.2693 x 10^21667 | 5.2037 x 10^21683 | 2.1568 x 10^21700 | 9.0380 x 10^21716 | 3.8291 x 10^21733 | 1.6401 x 10^21750 | 7.1031 x 10^21766 | 3.1101 x 10^21783 |
20,800 | 1.3768 x 10^21800 | 6.1621 x 10^21816 | 2.7884 x 10^21833 | 1.2757 x 10^21850 | 5.9012 x 10^21866 | 2.7598 x 10^21883 | 1.3049 x 10^21900 | 6.2386 x 10^21916 | 3.0154 x 10^21933 | 1.4736 x 10^21950 |
20,900 | 7.2811 x 10^21966 | 3.6373 x 10^21983 | 1.8371 x 10^22000 | 9.3817 x 10^22016 | 4.8439 x 10^22033 | 2.5286 x 10^22050 | 1.3346 x 10^22067 | 7.1223 x 10^22083 | 3.8428 x 10^22100 | 2.0963 x 10^22117 |
21,000 | 1.1562 x 10^22134 | 6.4481 x 10^22150 | 3.6357 x 10^22167 | 2.0727 x 10^22184 | 1.1947 x 10^22201 | 6.9627 x 10^22217 | 4.1028 x 10^22234 | 2.4443 x 10^22251 | 1.4724 x 10^22268 | 8.9681 x 10^22284 |
21,100 | 5.5227 x 10^22301 | 3.4386 x 10^22318 | 2.1648 x 10^22335 | 1.3779 x 10^22352 | 8.8686 x 10^22368 | 5.7711 x 10^22385 | 3.7971 x 10^22402 | 2.5261 x 10^22419 | 1.6991 x 10^22436 | 1.1556 x 10^22453 |
21,200 | 7.9469 x 10^22469 | 5.5255 x 10^22486 | 3.8846 x 10^22503 | 2.7613 x 10^22520 | 1.9847 x 10^22537 | 1.4423 x 10^22554 | 1.0598 x 10^22571 | 7.8744 x 10^22587 | 5.9155 x 10^22604 | 4.4934 x 10^22621 |
21,300 | 3.4511 x 10^22638 | 2.6801 x 10^22655 | 2.1045 x 10^22672 | 1.6709 x 10^22689 | 1.3414 x 10^22706 | 1.0888 x 10^22723 | 8.9374 x 10^22739 | 7.4174 x 10^22756 | 6.2244 x 10^22773 | 5.2815 x 10^22790 |
21,400 | 4.5314 x 10^22807 | 3.9311 x 10^22824 | 3.4484 x 10^22841 | 3.0586 x 10^22858 | 2.7432 x 10^22875 | 2.4877 x 10^22892 | 2.2812 x 10^22909 | 2.1152 x 10^22926 | 1.9831 x 10^22943 | 1.8801 x 10^22960 |
21,500 | 1.8022 x 10^22977 | 1.7469 x 10^22994 | 1.7122 x 10^23011 | 1.6970 x 10^23028 | 1.7006 x 10^23045 | 1.7233 x 10^23062 | 1.7659 x 10^23079 | 1.8297 x 10^23096 | 1.9170 x 10^23113 | 2.0309 x 10^23130 |
21,600 | 2.1756 x 10^23147 | 2.3568 x 10^23164 | 2.5815 x 10^23181 | 2.8594 x 10^23198 | 3.2026 x 10^23215 | 3.6271 x 10^23232 | 4.1539 x 10^23249 | 4.8105 x 10^23266 | 5.6333 x 10^23283 | 6.6707 x 10^23300 |
21,700 | 7.9877 x 10^23317 | 9.6718 x 10^23334 | 1.1842 x 10^23352 | 1.4662 x 10^23369 | 1.8357 x 10^23386 | 2.3241 x 10^23403 | 2.9755 x 10^23420 | 3.8522 x 10^23437 | 5.0431 x 10^23454 | 6.6763 x 10^23471 |
21,800 | 8.9377 x 10^23488 | 1.2099 x 10^23506 | 1.6563 x 10^23523 | 2.2929 x 10^23540 | 3.2097 x 10^23557 | 4.5437 x 10^23574 | 6.5044 x 10^23591 | 9.4159 x 10^23608 | 1.3783 x 10^23626 | 2.0405 x 10^23643 |
21,900 | 3.0546 x 10^23660 | 4.6242 x 10^23677 | 7.0791 x 10^23694 | 1.0959 x 10^23712 | 1.7157 x 10^23729 | 2.7163 x 10^23746 | 4.3488 x 10^23763 | 7.0409 x 10^23780 | 1.1527 x 10^23798 | 1.9087 x 10^23815 |
22,000 | 3.1959 x 10^23832 | 5.4116 x 10^23849 | 9.2667 x 10^23866 | 1.6047 x 10^23884 | 2.8102 x 10^23901 | 4.9768 x 10^23918 | 8.9134 x 10^23935 | 1.6143 x 10^23953 | 2.9569 x 10^23970 | 5.4773 x 10^23987 |
22,100 | 1.0260 x 10^24005 | 1.9437 x 10^24022 | 3.7239 x 10^24039 | 7.2151 x 10^24056 | 1.4137 x 10^24074 | 2.8013 x 10^24091 | 5.6139 x 10^24108 | 1.1377 x 10^24126 | 2.3319 x 10^24143 | 4.8335 x 10^24160 |
22,200 | 1.0132 x 10^24178 | 2.1480 x 10^24195 | 4.6054 x 10^24212 | 9.9858 x 10^24229 | 2.1897 x 10^24247 | 4.8563 x 10^24264 | 1.0892 x 10^24282 | 2.4706 x 10^24299 | 5.6677 x 10^24316 | 1.3149 x 10^24334 |
22,300 | 3.0853 x 10^24351 | 7.3216 x 10^24368 | 1.7571 x 10^24386 | 4.2650 x 10^24403 | 1.0469 x 10^24421 | 2.5992 x 10^24438 | 6.5265 x 10^24455 | 1.6573 x 10^24473 | 4.2565 x 10^24490 | 1.1056 x 10^24508 |
22,400 | 2.9046 x 10^24525 | 7.7173 x 10^24542 | 2.0737 x 10^24560 | 5.6360 x 10^24577 | 1.5491 x 10^24595 | 4.3067 x 10^24612 | 1.2109 x 10^24630 | 3.4435 x 10^24647 | 9.9040 x 10^24664 | 2.8809 x 10^24682 |
22,500 | 8.4760 x 10^24699 | 2.5221 x 10^24717 | 7.5907 x 10^24734 | 2.3105 x 10^24752 | 7.1134 x 10^24769 | 2.2149 x 10^24787 | 6.9758 x 10^24804 | 2.2220 x 10^24822 | 7.1588 x 10^24839 | 2.3327 x 10^24857 |
22,600 | 7.6882 x 10^24874 | 2.5628 x 10^24892 | 8.6409 x 10^24909 | 2.9467 x 10^24927 | 1.0163 x 10^24945 | 3.5458 x 10^24962 | 1.2511 x 10^24980 | 4.4655 x 10^24997 | 1.6120 x 10^25015 | 5.8859 x 10^25032 |
22,700 | 2.1737 x 10^25050 | 8.1198 x 10^25067 | 3.0679 x 10^25085 | 1.1724 x 10^25103 | 4.5319 x 10^25120 | 1.7719 x 10^25138 | 7.0073 x 10^25155 | 2.8030 x 10^25173 | 1.1341 x 10^25191 | 4.6413 x 10^25208 |
22,800 | 1.9212 x 10^25226 | 8.0446 x 10^25243 | 3.4071 x 10^25261 | 1.4595 x 10^25279 | 6.3247 x 10^25296 | 2.7721 x 10^25314 | 1.2290 x 10^25332 | 5.5117 x 10^25349 | 2.5002 x 10^25367 | 1.1472 x 10^25385 |
22,900 | 5.3246 x 10^25402 | 2.4998 x 10^25420 | 1.1871 x 10^25438 | 5.7027 x 10^25455 | 2.7710 x 10^25473 | 1.3619 x 10^25491 | 6.7716 x 10^25508 | 3.4056 x 10^25526 | 1.7325 x 10^25544 | 8.9159 x 10^25561 |
23,000 | 4.6412 x 10^25579 | 2.4439 x 10^25597 | 1.3017 x 10^25615 | 7.0143 x 10^25632 | 3.8231 x 10^25650 | 2.1079 x 10^25668 | 1.1756 x 10^25686 | 6.6330 x 10^25703 | 3.7856 x 10^25721 | 2.1856 x 10^25739 |
23,100 | 1.2764 x 10^25757 | 7.5412 x 10^25774 | 4.5069 x 10^25792 | 2.7247 x 10^25810 | 1.6664 x 10^25828 | 1.0310 x 10^25846 | 6.4526 x 10^25863 | 4.0853 x 10^25881 | 2.6166 x 10^25899 | 1.6953 x 10^25917 |
23,200 | 1.1112 x 10^25935 | 7.3682 x 10^25952 | 4.9425 x 10^25970 | 3.3538 x 10^25988 | 2.3023 x 10^26006 | 1.5989 x 10^26024 | 1.1233 x 10^26042 | 7.9837 x 10^26059 | 5.7403 x 10^26077 | 4.1754 x 10^26095 |
23,300 | 3.0725 x 10^26113 | 2.2873 x 10^26131 | 1.7226 x 10^26149 | 1.3124 x 10^26167 | 1.0116 x 10^26185 | 7.8889 x 10^26202 | 6.2236 x 10^26220 | 4.9671 x 10^26238 | 4.0106 x 10^26256 | 3.2762 x 10^26274 |
23,400 | 2.7075 x 10^26292 | 2.2637 x 10^26310 | 1.9148 x 10^26328 | 1.6386 x 10^26346 | 1.4187 x 10^26364 | 1.2426 x 10^26382 | 1.1012 x 10^26400 | 9.8733 x 10^26417 | 8.9557 x 10^26435 | 8.2187 x 10^26453 |
23,500 | 7.6308 x 10^26471 | 7.1680 x 10^26489 | 6.8123 x 10^26507 | 6.5503 x 10^26525 | 6.3723 x 10^26543 | 6.2719 x 10^26561 | 6.2457 x 10^26579 | 6.2926 x 10^26597 | 6.4145 x 10^26615 | 6.6156 x 10^26633 |
23,600 | 6.9033 x 10^26651 | 7.2882 x 10^26669 | 7.7853 x 10^26687 | 8.4141 x 10^26705 | 9.2009 x 10^26723 | 1.0179 x 10^26742 | 1.1395 x 10^26760 | 1.2907 x 10^26778 | 1.4791 x 10^26796 | 1.7150 x 10^26814 |
23,700 | 2.0121 x 10^26832 | 2.3885 x 10^26850 | 2.8687 x 10^26868 | 3.4863 x 10^26886 | 4.2868 x 10^26904 | 5.3335 x 10^26922 | 6.7142 x 10^26940 | 8.5524 x 10^26958 | 1.1022 x 10^26977 | 1.4374 x 10^26995 |
23,800 | 1.8968 x 10^27013 | 2.5326 x 10^27031 | 3.4215 x 10^27049 | 4.6773 x 10^27067 | 6.4698 x 10^27085 | 9.0553 x 10^27103 | 1.2824 x 10^27122 | 1.8378 x 10^27140 | 2.6650 x 10^27158 | 3.9104 x 10^27176 |
23,900 | 5.8059 x 10^27194 | 8.7227 x 10^27212 | 1.3260 x 10^27231 | 2.0399 x 10^27249 | 3.1755 x 10^27267 | 5.0019 x 10^27285 | 7.9728 x 10^27303 | 1.2859 x 10^27322 | 2.0988 x 10^27340 | 3.4664 x 10^27358 |
24,000 | 5.7934 x 10^27376 | 9.7981 x 10^27394 | 1.6768 x 10^27413 | 2.9040 x 10^27431 | 5.0894 x 10^27449 | 9.0259 x 10^27467 | 1.6198 x 10^27486 | 2.9418 x 10^27504 | 5.4065 x 10^27522 | 1.0055 x 10^27541 |
24,100 | 1.8924 x 10^27559 | 3.6043 x 10^27577 | 6.9471 x 10^27595 | 1.3550 x 10^27614 | 2.6746 x 10^27632 | 5.3428 x 10^27650 | 1.0800 x 10^27669 | 2.2095 x 10^27687 | 4.5744 x 10^27705 | 9.5842 x 10^27723 |
24,200 | 2.0321 x 10^27742 | 4.3607 x 10^27760 | 9.4697 x 10^27778 | 2.0811 x 10^27797 | 4.6289 x 10^27815 | 1.0419 x 10^27834 | 2.3735 x 10^27852 | 5.4721 x 10^27870 | 1.2767 x 10^27889 | 3.0149 x 10^27907 |
24,300 | 7.2051 x 10^27925 | 1.7426 x 10^27944 | 4.2657 x 10^27962 | 1.0567 x 10^27981 | 2.6496 x 10^27999 | 6.7237 x 10^28017 | 1.7268 x 10^28036 | 4.4884 x 10^28054 | 1.1807 x 10^28073 | 3.1439 x 10^28091 |
24,400 | 8.4721 x 10^28109 | 2.3106 x 10^28128 | 6.3784 x 10^28146 | 1.7820 x 10^28165 | 5.0392 x 10^28183 | 1.4422 x 10^28202 | 4.1778 x 10^28220 | 1.2248 x 10^28239 | 3.6348 x 10^28257 | 1.0917 x 10^28276 |
24,500 | 3.3189 x 10^28294 | 1.0212 x 10^28313 | 3.1805 x 10^28331 | 1.0025 x 10^28350 | 3.1988 x 10^28368 | 1.0330 x 10^28387 | 3.3769 x 10^28405 | 1.1172 x 10^28424 | 3.7417 x 10^28442 | 1.2683 x 10^28461 |
24,600 | 4.3520 x 10^28479 | 1.5114 x 10^28498 | 5.3134 x 10^28516 | 1.8907 x 10^28535 | 6.8099 x 10^28553 | 2.4828 x 10^28572 | 9.1626 x 10^28590 | 3.4227 x 10^28609 | 1.2942 x 10^28628 | 4.9538 x 10^28646 |
24,700 | 1.9193 x 10^28665 | 7.5274 x 10^28683 | 2.9884 x 10^28702 | 1.2009 x 10^28721 | 4.8854 x 10^28739 | 2.0117 x 10^28758 | 8.3860 x 10^28776 | 3.5386 x 10^28795 | 1.5115 x 10^28814 | 6.5359 x 10^28832 |
24,800 | 2.8609 x 10^28851 | 1.2676 x 10^28870 | 5.6864 x 10^28888 | 2.5821 x 10^28907 | 1.1869 x 10^28926 | 5.5233 x 10^28944 | 2.6019 x 10^28963 | 1.2408 x 10^28982 | 5.9905 x 10^29000 | 2.9278 x 10^29019 |
24,900 | 1.4486 x 10^29038 | 7.2558 x 10^29056 | 3.6792 x 10^29075 | 1.8887 x 10^29094 | 9.8158 x 10^29112 | 5.1644 x 10^29131 | 2.7508 x 10^29150 | 1.4833 x 10^29169 | 8.0981 x 10^29187 | 4.4758 x 10^29206 |
25,000 | 2.5044 x 10^29225 | 1.4187 x 10^29244 | 8.1370 x 10^29262 | 4.7247 x 10^29281 | 2.7775 x 10^29300 | 1.6531 x 10^29319 | 9.9613 x 10^29337 | 6.0771 x 10^29356 | 3.7536 x 10^29375 | 2.3473 x 10^29394 |
25,100 | 1.4862 x 10^29413 | 9.5275 x 10^29431 | 6.1837 x 10^29450 | 4.0635 x 10^29469 | 2.7035 x 10^29488 | 1.8212 x 10^29507 | 1.2422 x 10^29526 | 8.5784 x 10^29544 | 5.9981 x 10^29563 | 4.2464 x 10^29582 |
25,200 | 3.0439 x 10^29601 | 2.2092 x 10^29620 | 1.6235 x 10^29639 | 1.2081 x 10^29658 | 9.1021 x 10^29676 | 6.9438 x 10^29695 | 5.3637 x 10^29714 | 4.1952 x 10^29733 | 3.3224 x 10^29752 | 2.6643 x 10^29771 |
25,300 | 2.1634 x 10^29790 | 1.7788 x 10^29809 | 1.4810 x 10^29828 | 1.2485 x 10^29847 | 1.0658 x 10^29866 | 9.2133 x 10^29884 | 8.0646 x 10^29903 | 7.1481 x 10^29922 | 6.4157 x 10^29941 | 5.8311 x 10^29960 |
25,400 | 5.3666 x 10^29979 | 5.0016 x 10^29998 | 4.7203 x 10^30017 | 4.5112 x 10^30036 | 4.3660 x 10^30055 | 4.2788 x 10^30074 | 4.2466 x 10^30093 | 4.2680 x 10^30112 | 4.3439 x 10^30131 | 4.4772 x 10^30150 |
25,500 | 4.6732 x 10^30169 | 4.9397 x 10^30188 | 5.2877 x 10^30207 | 5.7321 x 10^30226 | 6.2930 x 10^30245 | 6.9966 x 10^30264 | 7.8778 x 10^30283 | 8.9830 x 10^30302 | 1.0373 x 10^30322 | 1.2132 x 10^30341 |
25,600 | 1.4370 x 10^30360 | 1.7238 x 10^30379 | 2.0942 x 10^30398 | 2.5767 x 10^30417 | 3.2109 x 10^30436 | 4.0523 x 10^30455 | 5.1796 x 10^30474 | 6.7052 x 10^30493 | 8.7913 x 10^30512 | 1.1674 x 10^30532 |
25,700 | 1.5700 x 10^30551 | 2.1387 x 10^30570 | 2.9506 x 10^30589 | 4.1230 x 10^30608 | 5.8353 x 10^30627 | 8.3648 x 10^30646 | 1.2145 x 10^30666 | 1.7860 x 10^30685 | 2.6602 x 10^30704 | 4.0134 x 10^30723 |
25,800 | 6.1329 x 10^30742 | 9.4925 x 10^30761 | 1.4881 x 10^30781 | 2.3632 x 10^30800 | 3.8011 x 10^30819 | 6.1929 x 10^30838 | 1.0220 x 10^30858 | 1.7084 x 10^30877 | 2.8927 x 10^30896 | 4.9614 x 10^30915 |
25,900 | 8.6198 x 10^30934 | 1.5169 x 10^30954 | 2.7042 x 10^30973 | 4.8832 x 10^30992 | 8.9323 x 10^31011 | 1.6551 x 10^31031 | 3.1066 x 10^31050 | 5.9069 x 10^31069 | 1.1377 x 10^31089 | 2.2199 x 10^31108 |
26,000 | 4.3878 x 10^31127 | 8.7857 x 10^31146 | 1.7820 x 10^31166 | 3.6618 x 10^31185 | 7.6225 x 10^31204 | 1.6074 x 10^31224 | 3.4339 x 10^31243 | 7.4317 x 10^31262 | 1.6294 x 10^31282 | 3.6191 x 10^31301 |
26,100 | 8.1439 x 10^31320 | 1.8565 x 10^31340 | 4.2878 x 10^31359 | 1.0032 x 10^31379 | 2.3782 x 10^31398 | 5.7114 x 10^31417 | 1.3896 x 10^31437 | 3.4255 x 10^31456 | 8.5551 x 10^31475 | 2.1646 x 10^31495 |
26,200 | 5.5493 x 10^31514 | 1.4413 x 10^31534 | 3.7928 x 10^31553 | 1.0112 x 10^31573 | 2.7316 x 10^31592 | 7.4764 x 10^31611 | 2.0732 x 10^31631 | 5.8252 x 10^31650 | 1.6583 x 10^31670 | 4.7834 x 10^31689 |
26,300 | 1.3980 x 10^31709 | 4.1399 x 10^31728 | 1.2421 x 10^31748 | 3.7765 x 10^31767 | 1.1633 x 10^31787 | 3.6313 x 10^31806 | 1.1485 x 10^31826 | 3.6809 x 10^31845 | 1.1953 x 10^31865 | 3.9333 x 10^31884 |
26,400 | 1.3115 x 10^31904 | 4.4313 x 10^31923 | 1.5171 x 10^31943 | 5.2636 x 10^31962 | 1.8504 x 10^31982 | 6.5923 x 10^32001 | 2.3798 x 10^32021 | 8.7061 x 10^32040 | 3.2274 x 10^32060 | 1.2124 x 10^32080 |
26,500 | 4.6158 x 10^32099 | 1.7807 x 10^32119 | 6.9620 x 10^32138 | 2.7583 x 10^32158 | 1.1075 x 10^32178 | 4.5064 x 10^32197 | 1.8582 x 10^32217 | 7.7657 x 10^32236 | 3.2889 x 10^32256 | 1.4116 x 10^32276 |
26,600 | 6.1405 x 10^32295 | 2.7070 x 10^32315 | 1.2094 x 10^32335 | 5.4764 x 10^32354 | 2.5132 x 10^32374 | 1.1689 x 10^32394 | 5.5101 x 10^32413 | 2.6325 x 10^32433 | 1.2747 x 10^32453 | 6.2558 x 10^32472 |
26,700 | 3.1117 x 10^32492 | 1.5687 x 10^32512 | 8.0161 x 10^32531 | 4.1516 x 10^32551 | 2.1793 x 10^32571 | 1.1595 x 10^32591 | 6.2533 x 10^32610 | 3.4182 x 10^32630 | 1.8938 x 10^32650 | 1.0636 x 10^32670 |
26,800 | 6.0545 x 10^32689 | 3.4935 x 10^32709 | 2.0432 x 10^32729 | 1.2113 x 10^32749 | 7.2795 x 10^32768 | 4.4343 x 10^32788 | 2.7381 x 10^32808 | 1.7138 x 10^32828 | 1.0874 x 10^32848 | 6.9941 x 10^32867 |
26,900 | 4.5601 x 10^32887 | 3.0139 x 10^32907 | 2.0193 x 10^32927 | 1.3715 x 10^32947 | 9.4434 x 10^32966 | 6.5914 x 10^32986 | 4.6640 x 10^33006 | 3.3456 x 10^33026 | 2.4330 x 10^33046 | 1.7936 x 10^33066 |
27,000 | 1.3406 x 10^33086 | 1.0157 x 10^33106 | 7.8029 x 10^33125 | 6.0767 x 10^33145 | 4.7979 x 10^33165 | 3.8405 x 10^33185 | 3.1168 x 10^33205 | 2.5644 x 10^33225 | 2.1392 x 10^33245 | 1.8093 x 10^33265 |
27,100 | 1.5514 x 10^33285 | 1.3488 x 10^33305 | 1.1890 x 10^33325 | 1.0626 x 10^33345 | 9.6295 x 10^33364 | 8.8475 x 10^33384 | 8.2423 x 10^33404 | 7.7855 x 10^33424 | 7.4566 x 10^33444 | 7.2412 x 10^33464 |
27,200 | 7.1304 x 10^33484 | 7.1193 x 10^33504 | 7.2077 x 10^33524 | 7.3993 x 10^33544 | 7.7024 x 10^33564 | 8.1302 x 10^33584 | 8.7022 x 10^33604 | 9.4451 x 10^33624 | 1.0395 x 10^33645 | 1.1601 x 10^33665 |
27,300 | 1.3130 x 10^33685 | 1.5070 x 10^33705 | 1.7539 x 10^33725 | 2.0700 x 10^33745 | 2.4776 x 10^33765 | 3.0072 x 10^33785 | 3.7016 x 10^33805 | 4.6207 x 10^33825 | 5.8495 x 10^33845 | 7.5099 x 10^33865 |
27,400 | 9.7781 x 10^33885 | 1.2911 x 10^33906 | 1.7291 x 10^33926 | 2.3484 x 10^33946 | 3.2348 x 10^33966 | 4.5191 x 10^33986 | 6.4030 x 10^34006 | 9.2013 x 10^34026 | 1.3410 x 10^34047 | 1.9824 x 10^34067 |
27,500 | 2.9723 x 10^34087 | 4.5199 x 10^34107 | 6.9716 x 10^34127 | 1.0906 x 10^34148 | 1.7306 x 10^34168 | 2.7854 x 10^34188 | 4.5473 x 10^34208 | 7.5298 x 10^34228 | 1.2647 x 10^34249 | 2.1547 x 10^34269 |
27,600 | 3.7238 x 10^34289 | 6.5279 x 10^34309 | 1.1607 x 10^34330 | 2.0938 x 10^34350 | 3.8311 x 10^34370 | 7.1109 x 10^34390 | 1.3388 x 10^34411 | 2.5572 x 10^34431 | 4.9548 x 10^34451 | 9.7391 x 10^34471 |
27,700 | 1.9419 x 10^34492 | 3.9282 x 10^34512 | 8.0611 x 10^34532 | 1.6782 x 10^34553 | 3.5443 x 10^34573 | 7.5943 x 10^34593 | 1.6508 x 10^34614 | 3.6406 x 10^34634 | 8.1456 x 10^34654 | 1.8490 x 10^34675 |
27,800 | 4.2583 x 10^34695 | 9.9499 x 10^34715 | 2.3587 x 10^34736 | 5.6733 x 10^34756 | 1.3845 x 10^34777 | 3.4280 x 10^34797 | 8.6121 x 10^34817 | 2.1952 x 10^34838 | 5.6776 x 10^34858 | 1.4899 x 10^34879 |
27,900 | 3.9673 x 10^34899 | 1.0719 x 10^34920 | 2.9386 x 10^34940 | 8.1748 x 10^34960 | 2.3075 x 10^34981 | 6.6095 x 10^35001 | 1.9210 x 10^35022 | 5.6659 x 10^35042 | 1.6957 x 10^35063 | 5.1501 x 10^35083 |
28,000 | 1.5872 x 10^35104 | 4.9642 x 10^35124 | 1.5755 x 10^35145 | 5.0747 x 10^35165 | 1.6587 x 10^35186 | 5.5021 x 10^35206 | 1.8522 x 10^35227 | 6.3278 x 10^35247 | 2.1939 x 10^35268 | 7.7201 x 10^35288 |
28,100 | 2.7569 x 10^35309 | 9.9923 x 10^35329 | 3.6756 x 10^35350 | 1.3722 x 10^35371 | 5.1996 x 10^35391 | 1.9996 x 10^35412 | 7.8052 x 10^35432 | 3.0922 x 10^35453 | 1.2434 x 10^35474 | 5.0750 x 10^35494 |
28,200 | 2.1024 x 10^35515 | 8.8405 x 10^35535 | 3.7732 x 10^35556 | 1.6347 x 10^35577 | 7.1887 x 10^35597 | 3.2089 x 10^35618 | 1.4540 x 10^35639 | 6.6878 x 10^35659 | 3.1225 x 10^35680 | 1.4799 x 10^35701 |
28,300 | 7.1205 x 10^35721 | 3.4777 x 10^35742 | 1.7243 x 10^35763 | 8.6791 x 10^35783 | 4.4347 x 10^35804 | 2.3004 x 10^35825 | 1.2114 x 10^35846 | 6.4769 x 10^35866 | 3.5155 x 10^35887 | 1.9371 x 10^35908 |
28,400 | 1.0837 x 10^35929 | 6.1556 x 10^35949 | 3.5497 x 10^35970 | 2.0782 x 10^35991 | 1.2354 x 10^36012 | 7.4562 x 10^36032 | 4.5691 x 10^36053 | 2.8428 x 10^36074 | 1.7959 x 10^36095 | 1.1520 x 10^36116 |
28,500 | 7.5032 x 10^36136 | 4.9621 x 10^36157 | 3.3321 x 10^36178 | 2.2721 x 10^36199 | 1.5732 x 10^36220 | 1.1061 x 10^36241 | 7.8970 x 10^36261 | 5.7253 x 10^36282 | 4.2151 x 10^36303 | 3.1513 x 10^36324 |
28,600 | 2.3925 x 10^36345 | 1.8446 x 10^36366 | 1.4443 x 10^36387 | 1.1484 x 10^36408 | 9.2739 x 10^36428 | 7.6055 x 10^36449 | 6.3345 x 10^36470 | 5.3581 x 10^36491 | 4.6030 x 10^36512 | 4.0161 x 10^36533 |
28,700 | 3.5589 x 10^36554 | 3.2031 x 10^36575 | 2.9280 x 10^36596 | 2.7185 x 10^36617 | 2.5636 x 10^36638 | 2.4555 x 10^36659 | 2.3889 x 10^36680 | 2.3607 x 10^36701 | 2.3696 x 10^36722 | 2.4160 x 10^36743 |
28,800 | 2.5022 x 10^36764 | 2.6324 x 10^36785 | 2.8131 x 10^36806 | 3.0537 x 10^36827 | 3.3675 x 10^36848 | 3.7723 x 10^36869 | 4.2928 x 10^36890 | 4.9626 x 10^36911 | 5.8282 x 10^36932 | 6.9535 x 10^36953 |
28,900 | 8.4282 x 10^36974 | 1.0378 x 10^36996 | 1.2983 x 10^37017 | 1.6501 x 10^37038 | 2.1308 x 10^37059 | 2.7955 x 10^37080 | 3.7262 x 10^37101 | 5.0463 x 10^37122 | 6.9437 x 10^37143 | 9.7077 x 10^37164 |
29,000 | 1.3790 x 10^37186 | 1.9903 x 10^37207 | 2.9190 x 10^37228 | 4.3499 x 10^37249 | 6.5868 x 10^37270 | 1.0134 x 10^37292 | 1.5845 x 10^37313 | 2.5175 x 10^37334 | 4.0644 x 10^37355 | 6.6681 x 10^37376 |
29,100 | 1.1117 x 10^37398 | 1.8835 x 10^37419 | 3.2430 x 10^37440 | 5.6745 x 10^37461 | 1.0090 x 10^37483 | 1.8235 x 10^37504 | 3.3492 x 10^37525 | 6.2516 x 10^37546 | 1.1859 x 10^37568 | 2.2867 x 10^37589 |
29,200 | 4.4811 x 10^37610 | 8.9252 x 10^37631 | 1.8068 x 10^37653 | 3.7177 x 10^37674 | 7.7752 x 10^37695 | 1.6528 x 10^37717 | 3.5713 x 10^37738 | 7.8440 x 10^37759 | 1.7512 x 10^37781 | 3.9742 x 10^37802 |
29,300 | 9.1680 x 10^37823 | 2.1499 x 10^37845 | 5.1251 x 10^37866 | 1.2419 x 10^37888 | 3.0596 x 10^37909 | 7.6625 x 10^37930 | 1.9509 x 10^37952 | 5.0496 x 10^37973 | 1.3287 x 10^37995 | 3.5549 x 10^38016 |
29,400 | 9.6690 x 10^38037 | 2.6738 x 10^38059 | 7.5175 x 10^38080 | 2.1489 x 10^38102 | 6.2458 x 10^38123 | 1.8457 x 10^38145 | 5.5460 x 10^38166 | 1.6944 x 10^38188 | 5.2639 x 10^38209 | 1.6627 x 10^38231 |
29,500 | 5.3410 x 10^38252 | 1.7445 x 10^38274 | 5.7942 x 10^38295 | 1.9569 x 10^38317 | 6.7215 x 10^38338 | 2.3476 x 10^38360 | 8.3389 x 10^38381 | 3.0122 x 10^38403 | 1.1065 x 10^38425 | 4.1341 x 10^38446 |
29,600 | 1.5708 x 10^38468 | 6.0701 x 10^38489 | 2.3856 x 10^38511 | 9.5363 x 10^38532 | 3.8771 x 10^38554 | 1.6032 x 10^38576 | 6.7431 x 10^38597 | 2.8847 x 10^38619 | 1.2552 x 10^38641 | 5.5560 x 10^38662 |
29,700 | 2.5015 x 10^38684 | 1.1456 x 10^38706 | 5.3371 x 10^38727 | 2.5292 x 10^38749 | 1.2193 x 10^38771 | 5.9797 x 10^38792 | 2.9833 x 10^38814 | 1.5141 x 10^38836 | 7.8181 x 10^38857 | 4.1069 x 10^38879 |
29,800 | 2.1948 x 10^38901 | 1.1934 x 10^38923 | 6.6018 x 10^38944 | 3.7157 x 10^38966 | 2.1278 x 10^38988 | 1.2397 x 10^39010 | 7.3501 x 10^39031 | 4.4337 x 10^39053 | 2.7214 x 10^39075 | 1.6997 x 10^39097 |
29,900 | 1.0802 x 10^39119 | 6.9858 x 10^39140 | 4.5972 x 10^39162 | 3.0787 x 10^39184 | 2.0981 x 10^39206 | 1.4550 x 10^39228 | 1.0269 x 10^39250 | 7.3765 x 10^39271 | 5.3922 x 10^39293 | 4.0116 x 10^39315 |
0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | |
---|---|---|---|---|---|---|---|---|---|---|
30,000 | 3.0375 x 10^39337 | 2.3408 x 10^39359 | 1.8360 x 10^39381 | 1.4657 x 10^39403 | 1.1909 x 10^39425 | 9.8499 x 10^39446 | 8.2920 x 10^39468 | 7.1055 x 10^39490 | 6.1978 x 10^39512 | 5.5030 x 10^39534 |
30,100 | 4.9738 x 10^39556 | 4.5763 x 10^39578 | 4.2863 x 10^39600 | 4.0870 x 10^39622 | 3.9673 x 10^39644 | 3.9206 x 10^39666 | 3.9445 x 10^39688 | 4.0404 x 10^39710 | 4.2135 x 10^39732 | 4.4738 x 10^39754 |
30,200 | 4.8364 x 10^39776 | 5.3235 x 10^39798 | 5.9663 x 10^39820 | 6.8085 x 10^39842 | 7.9113 x 10^39864 | 9.3607 x 10^39886 | 1.1278 x 10^39909 | 1.3837 x 10^39931 | 1.7287 x 10^39953 | 2.1995 x 10^39975 |
30,300 | 2.8498 x 10^39997 | 3.7603 x 10^40019 | 5.0531 x 10^40041 | 6.9156 x 10^40063 | 9.6391 x 10^40085 | 1.3683 x 10^40108 | 1.9784 x 10^40130 | 2.9135 x 10^40152 | 4.3700 x 10^40174 | 6.6765 x 10^40196 |
30,400 | 1.0389 x 10^40219 | 1.6469 x 10^40241 | 2.6593 x 10^40263 | 4.3740 x 10^40285 | 7.3288 x 10^40307 | 1.2509 x 10^40330 | 2.1751 x 10^40352 | 3.8531 x 10^40374 | 6.9535 x 10^40396 | 1.2784 x 10^40419 |
30,500 | 2.3947 x 10^40441 | 4.5703 x 10^40463 | 8.8867 x 10^40485 | 1.7606 x 10^40508 | 3.5539 x 10^40530 | 7.3099 x 10^40552 | 1.5320 x 10^40575 | 3.2717 x 10^40597 | 7.1199 x 10^40619 | 1.5788 x 10^40642 |
30,600 | 3.5679 x 10^40664 | 8.2167 x 10^40686 | 1.9283 x 10^40709 | 4.6121 x 10^40731 | 1.1242 x 10^40754 | 2.7928 x 10^40776 | 7.0713 x 10^40798 | 1.8248 x 10^40821 | 4.7996 x 10^40843 | 1.2867 x 10^40866 |
30,700 | 3.5161 x 10^40888 | 9.7938 x 10^40910 | 2.7807 x 10^40933 | 8.0479 x 10^40955 | 2.3744 x 10^40978 | 7.1413 x 10^41000 | 2.1895 x 10^41023 | 6.8440 x 10^41045 | 2.1809 x 10^41068 | 7.0855 x 10^41090 |
30,800 | 2.3469 x 10^41113 | 7.9259 x 10^41135 | 2.7290 x 10^41158 | 9.5812 x 10^41180 | 3.4298 x 10^41203 | 1.2519 x 10^41226 | 4.6597 x 10^41248 | 1.7685 x 10^41271 | 6.8450 x 10^41293 | 2.7016 x 10^41316 |
30,900 | 1.0874 x 10^41339 | 4.4635 x 10^41361 | 1.8685 x 10^41384 | 7.9777 x 10^41406 | 3.4738 x 10^41429 | 1.5428 x 10^41452 | 6.9886 x 10^41474 | 3.2289 x 10^41497 | 1.5217 x 10^41520 | 7.3153 x 10^41542 |
31,000 | 3.5872 x 10^41565 | 1.7943 x 10^41588 | 9.1564 x 10^41610 | 4.7664 x 10^41633 | 2.5312 x 10^41656 | 1.3714 x 10^41679 | 7.5805 x 10^41701 | 4.2749 x 10^41724 | 2.4597 x 10^41747 | 1.4440 x 10^41770 |
31,100 | 8.6499 x 10^41792 | 5.2869 x 10^41815 | 3.2973 x 10^41838 | 2.0984 x 10^41861 | 1.3628 x 10^41884 | 9.0318 x 10^41906 | 6.1084 x 10^41929 | 4.2161 x 10^41952 | 2.9699 x 10^41975 | 2.1351 x 10^41998 |
31,200 | 1.5666 x 10^42021 | 1.1732 x 10^42044 | 8.9686 x 10^42066 | 6.9976 x 10^42089 | 5.5730 x 10^42112 | 4.5306 x 10^42135 | 3.7598 x 10^42158 | 3.1852 x 10^42181 | 2.7546 x 10^42204 | 2.4321 x 10^42227 |
31,300 | 2.1922 x 10^42250 | 2.0174 x 10^42273 | 1.8955 x 10^42296 | 1.8184 x 10^42319 | 1.7812 x 10^42342 | 1.7814 x 10^42365 | 1.8193 x 10^42388 | 1.8973 x 10^42411 | 2.0205 x 10^42434 | 2.1973 x 10^42457 |
31,400 | 2.4403 x 10^42480 | 2.7678 x 10^42503 | 3.2061 x 10^42526 | 3.7931 x 10^42549 | 4.5833 x 10^42572 | 5.6567 x 10^42595 | 7.1309 x 10^42618 | 9.1823 x 10^42641 | 1.2077 x 10^42665 | 1.6228 x 10^42688 |
31,500 | 2.2274 x 10^42711 | 3.1234 x 10^42734 | 4.4744 x 10^42757 | 6.5485 x 10^42780 | 9.7919 x 10^42803 | 1.4959 x 10^42827 | 2.3351 x 10^42850 | 3.7245 x 10^42873 | 6.0702 x 10^42896 | 1.0109 x 10^42920 |
31,600 | 1.7204 x 10^42943 | 2.9921 x 10^42966 | 5.3179 x 10^42989 | 9.6595 x 10^43012 | 1.7931 x 10^43036 | 3.4023 x 10^43059 | 6.5979 x 10^43082 | 1.3078 x 10^43106 | 2.6497 x 10^43129 | 5.4877 x 10^43152 |
31,700 | 1.1617 x 10^43176 | 2.5143 x 10^43199 | 5.5630 x 10^43222 | 1.2583 x 10^43246 | 2.9098 x 10^43269 | 6.8798 x 10^43292 | 1.6631 x 10^43316 | 4.1107 x 10^43339 | 1.0389 x 10^43363 | 2.6850 x 10^43386 |
31,800 | 7.0959 x 10^43409 | 1.9177 x 10^43433 | 5.3001 x 10^43456 | 1.4981 x 10^43480 | 4.3307 x 10^43503 | 1.2804 x 10^43527 | 3.8721 x 10^43550 | 1.1977 x 10^43574 | 3.7896 x 10^43597 | 1.2265 x 10^43621 |
31,900 | 4.0607 x 10^43644 | 1.3753 x 10^43668 | 4.7657 x 10^43691 | 1.6894 x 10^43715 | 6.1274 x 10^43738 | 2.2738 x 10^43762 | 8.6338 x 10^43785 | 3.3544 x 10^43809 | 1.3335 x 10^43833 | 5.4255 x 10^43856 |
32,000 | 2.2588 x 10^43880 | 9.6241 x 10^43903 | 4.1966 x 10^43927 | 1.8729 x 10^43951 | 8.5552 x 10^43974 | 3.9999 x 10^43998 | 1.9142 x 10^44022 | 9.3777 x 10^44045 | 4.7027 x 10^44069 | 2.4142 x 10^44093 |
32,100 | 1.2688 x 10^44117 | 6.8277 x 10^44140 | 3.7614 x 10^44164 | 2.1217 x 10^44188 | 1.2254 x 10^44212 | 7.2473 x 10^44235 | 4.3890 x 10^44259 | 2.7219 x 10^44283 | 1.7287 x 10^44307 | 1.1244 x 10^44331 |
32,200 | 7.4911 x 10^44354 | 5.1113 x 10^44378 | 3.5722 x 10^44402 | 2.5572 x 10^44426 | 1.8752 x 10^44450 | 1.4086 x 10^44474 | 1.0840 x 10^44498 | 8.5468 x 10^44521 | 6.9037 x 10^44545 | 5.7135 x 10^44569 |
32,300 | 4.8450 x 10^44593 | 4.2098 x 10^44617 | 3.7483 x 10^44641 | 3.4201 x 10^44665 | 3.1980 x 10^44689 | 3.0646 x 10^44713 | 3.0099 x 10^44737 | 3.0300 x 10^44761 | 3.1264 x 10^44785 | 3.3067 x 10^44809 |
32,400 | 3.5850 x 10^44833 | 3.9846 x 10^44857 | 4.5401 x 10^44881 | 5.3037 x 10^44905 | 6.3522 x 10^44929 | 7.8007 x 10^44953 | 9.8226 x 10^44977 | 1.2683 x 10^45002 | 1.6793 x 10^45026 | 2.2803 x 10^45050 |
32,500 | 3.1756 x 10^45074 | 4.5357 x 10^45098 | 6.6446 x 10^45122 | 9.9843 x 10^45146 | 1.5389 x 10^45171 | 2.4332 x 10^45195 | 3.9468 x 10^45219 | 6.5679 x 10^45243 | 1.1213 x 10^45268 | 1.9643 x 10^45292 |
32,600 | 3.5307 x 10^45316 | 6.5120 x 10^45340 | 1.2325 x 10^45365 | 2.3939 x 10^45389 | 4.7720 x 10^45413 | 9.7629 x 10^45437 | 2.0500 x 10^45462 | 4.4187 x 10^45486 | 9.7765 x 10^45510 | 2.2205 x 10^45535 |
32,700 | 5.1775 x 10^45559 | 1.2394 x 10^45584 | 3.0462 x 10^45608 | 7.6875 x 10^45632 | 1.9920 x 10^45657 | 5.3007 x 10^45681 | 1.4485 x 10^45706 | 4.0650 x 10^45730 | 1.1716 x 10^45755 | 3.4686 x 10^45779 |
32,800 | 1.0547 x 10^45804 | 3.2946 x 10^45828 | 1.0571 x 10^45853 | 3.4849 x 10^45877 | 1.1803 x 10^45902 | 4.1071 x 10^45926 | 1.4685 x 10^45951 | 5.3954 x 10^45975 | 2.0371 x 10^46000 | 7.9042 x 10^46024 |
32,900 | 3.1520 x 10^46049 | 1.2919 x 10^46074 | 5.4426 x 10^46098 | 2.3569 x 10^46123 | 1.0492 x 10^46148 | 4.8020 x 10^46172 | 2.2594 x 10^46197 | 1.0930 x 10^46222 | 5.4374 x 10^46246 | 2.7813 x 10^46271 |
33,000 | 1.4630 x 10^46296 | 7.9148 x 10^46320 | 4.4037 x 10^46345 | 2.5201 x 10^46370 | 1.4834 x 10^46395 | 8.9827 x 10^46419 | 5.5956 x 10^46444 | 3.5861 x 10^46469 | 2.3646 x 10^46494 | 1.6043 x 10^46519 |
33,100 | 1.1200 x 10^46544 | 8.0472 x 10^46568 | 5.9500 x 10^46593 | 4.5278 x 10^46618 | 3.5464 x 10^46643 | 2.8593 x 10^46668 | 2.3730 x 10^46693 | 2.0276 x 10^46718 | 1.7836 x 10^46743 | 1.6154 x 10^46768 |
33,200 | 1.5066 x 10^46793 | 1.4469 x 10^46818 | 1.4310 x 10^46843 | 1.4575 x 10^46868 | 1.5291 x 10^46893 | 1.6524 x 10^46918 | 1.8394 x 10^46943 | 2.1094 x 10^46968 | 2.4923 x 10^46993 | 3.0339 x 10^47018 |
33,300 | 3.8056 x 10^47043 | 4.9190 x 10^47068 | 6.5524 x 10^47093 | 8.9956 x 10^47118 | 1.2729 x 10^47144 | 1.8566 x 10^47169 | 2.7916 x 10^47194 | 4.3273 x 10^47219 | 6.9158 x 10^47244 | 1.1396 x 10^47270 |
33,400 | 1.9364 x 10^47295 | 3.3933 x 10^47320 | 6.1324 x 10^47345 | 1.1430 x 10^47371 | 2.1977 x 10^47396 | 4.3588 x 10^47421 | 8.9186 x 10^47446 | 1.8827 x 10^47472 | 4.1009 x 10^47497 | 9.2172 x 10^47522 |
33,500 | 2.1379 x 10^47548 | 5.1178 x 10^47573 | 1.2645 x 10^47599 | 3.2249 x 10^47624 | 8.4906 x 10^47649 | 2.3078 x 10^47675 | 6.4765 x 10^47700 | 1.8767 x 10^47726 | 5.6158 x 10^47751 | 1.7354 x 10^47777 |
33,600 | 5.5391 x 10^47802 | 1.8261 x 10^47828 | 6.2191 x 10^47853 | 2.1880 x 10^47879 | 7.9537 x 10^47904 | 2.9874 x 10^47930 | 1.1595 x 10^47956 | 4.6509 x 10^47981 | 1.9281 x 10^48007 | 8.2623 x 10^48032 |
33,700 | 3.6599 x 10^48058 | 1.6761 x 10^48084 | 7.9361 x 10^48109 | 3.8854 x 10^48135 | 1.9671 x 10^48161 | 1.0300 x 10^48187 | 5.5784 x 10^48212 | 3.1250 x 10^48238 | 1.8110 x 10^48264 | 1.0858 x 10^48290 |
33,800 | 6.7364 x 10^48315 | 4.3245 x 10^48341 | 2.8731 x 10^48367 | 1.9756 x 10^48393 | 1.4061 x 10^48419 | 1.0360 x 10^48445 | 7.9032 x 10^48470 | 6.2422 x 10^48496 | 5.1053 x 10^48522 | 4.3243 x 10^48548 |
33,900 | 3.7935 x 10^48574 | 3.4472 x 10^48600 | 3.2450 x 10^48626 | 3.1648 x 10^48652 | 3.1982 x 10^48678 | 3.3491 x 10^48704 | 3.6347 x 10^48730 | 4.0886 x 10^48756 | 4.7675 x 10^48782 | 5.7632 x 10^48808 |
34,000 | 7.2234 x 10^48834 | 9.3878 x 10^48860 | 1.2652 x 10^48887 | 1.7687 x 10^48913 | 2.5646 x 10^48939 | 3.8578 x 10^48965 | 6.0208 x 10^48991 | 9.7501 x 10^49017 | 1.6385 x 10^49044 | 2.8579 x 10^49070 |
34,100 | 5.1741 x 10^49096 | 9.7247 x 10^49122 | 1.8976 x 10^49149 | 3.8449 x 10^49175 | 8.0906 x 10^49201 | 1.7681 x 10^49228 | 4.0139 x 10^49254 | 9.4662 x 10^49280 | 2.3195 x 10^49307 | 5.9059 x 10^49333 |
34,200 | 1.5628 x 10^49360 | 4.2983 x 10^49386 | 1.2289 x 10^49413 | 3.6528 x 10^49439 | 1.1289 x 10^49466 | 3.6287 x 10^49492 | 1.2130 x 10^49519 | 4.2179 x 10^49545 | 1.5258 x 10^49572 | 5.7429 x 10^49598 |
34,300 | 2.2493 x 10^49625 | 9.1692 x 10^49651 | 3.8905 x 10^49678 | 1.7185 x 10^49705 | 7.9037 x 10^49731 | 3.7852 x 10^49758 | 1.8880 x 10^49785 | 9.8091 x 10^49811 | 5.3091 x 10^49838 | 2.9940 x 10^49865 |
34,400 | 1.7595 x 10^49892 | 1.0776 x 10^49919 | 6.8804 x 10^49945 | 4.5796 x 10^49972 | 3.1783 x 10^49999 | 2.3003 x 10^50026 | 1.7365 x 10^50053 | 1.3674 x 10^50080 | 1.1235 x 10^50107 | 9.6321 x 10^50133 |
34,500 | 8.6185 x 10^50160 | 8.0494 x 10^50187 | 7.8487 x 10^50214 | 7.9909 x 10^50241 | 8.4963 x 10^50268 | 9.4357 x 10^50295 | 1.0947 x 10^50323 | 1.3270 x 10^50350 | 1.6810 x 10^50377 | 2.2257 x 10^50404 |
34,600 | 3.0806 x 10^50431 | 4.4582 x 10^50458 | 6.7468 x 10^50485 | 1.0679 x 10^50513 | 1.7682 x 10^50540 | 3.0635 x 10^50567 | 5.5541 x 10^50594 | 1.0539 x 10^50622 | 2.0936 x 10^50649 | 4.3548 x 10^50676 |
34,700 | 9.4859 x 10^50703 | 2.1643 x 10^50731 | 5.1733 x 10^50758 | 1.2957 x 10^50786 | 3.4012 x 10^50813 | 9.3588 x 10^50840 | 2.6999 x 10^50868 | 8.1681 x 10^50895 | 2.5918 x 10^50923 | 8.6278 x 10^50950 |
34,800 | 3.0136 x 10^50978 | 1.1047 x 10^51006 | 4.2512 x 10^51033 | 1.7176 x 10^51061 | 7.2877 x 10^51088 | 3.2479 x 10^51116 | 1.5207 x 10^51144 | 7.4826 x 10^51171 | 3.8697 x 10^51199 | 2.1039 x 10^51227 |
34,900 | 1.2028 x 10^51255 | 7.2324 x 10^51282 | 4.5750 x 10^51310 | 3.0452 x 10^51338 | 2.1334 x 10^51366 | 1.5734 x 10^51394 | 1.2218 x 10^51422 | 9.9941 x 10^51449 | 8.6117 x 10^51477 | 7.8193 x 10^51505 |
35,000 | 7.4833 x 10^51533 | 7.5504 x 10^51561 | 8.0335 x 10^51589 | 9.0159 x 10^51617 | 1.0675 x 10^51646 | 1.3340 x 10^51674 | 1.7597 x 10^51702 | 2.4510 x 10^51730 | 3.6055 x 10^51758 | 5.6035 x 10^51786 |
35,100 | 9.2027 x 10^51814 | 1.5975 x 10^51843 | 2.9323 x 10^51871 | 5.6924 x 10^51899 | 1.1690 x 10^51928 | 2.5407 x 10^51956 | 5.8449 x 10^51984 | 1.4237 x 10^52013 | 3.6732 x 10^52041 | 1.0040 x 10^52070 |
35,200 | 2.9085 x 10^52098 | 8.9322 x 10^52126 | 2.9089 x 10^52155 | 1.0049 x 10^52184 | 3.6837 x 10^52212 | 1.4333 x 10^52241 | 5.9216 x 10^52269 | 2.5985 x 10^52298 | 1.2115 x 10^52327 | 6.0038 x 10^52355 |
35,300 | 3.1632 x 10^52384 | 1.7726 x 10^52413 | 1.0568 x 10^52442 | 6.7062 x 10^52470 | 4.5308 x 10^52499 | 3.2603 x 10^52528 | 2.4996 x 10^52557 | 2.0427 x 10^52586 | 1.7798 x 10^52615 | 1.6542 x 10^52644 |
35,400 | 1.6406 x 10^52673 | 1.7369 x 10^52702 | 1.9637 x 10^52731 | 2.3719 x 10^52760 | 3.0618 x 10^52789 | 4.2260 x 10^52818 | 6.2389 x 10^52847 | 9.8561 x 10^52876 | 1.6668 x 10^52906 | 3.0191 x 10^52935 |
35,500 | 5.8592 x 10^52964 | 1.2189 x 10^52994 | 2.7192 x 10^53023 | 6.5087 x 10^53052 | 1.6722 x 10^53082 | 4.6137 x 10^53111 | 1.3676 x 10^53141 | 4.3577 x 10^53170 | 1.4932 x 10^53200 | 5.5055 x 10^53229 |
35,600 | 2.1851 x 10^53259 | 9.3408 x 10^53288 | 4.3027 x 10^53318 | 2.1369 x 10^53348 | 1.1448 x 10^53378 | 6.6193 x 10^53407 | 4.1331 x 10^53437 | 2.7884 x 10^53467 | 2.0337 x 10^53497 | 1.6045 x 10^53527 |
35,700 | 1.3700 x 10^53557 | 1.2669 x 10^53587 | 1.2695 x 10^53617 | 1.3792 x 10^53647 | 1.6258 x 10^53677 | 2.0804 x 10^53707 | 2.8918 x 10^53737 | 4.3694 x 10^53767 | 7.1811 x 10^53797 | 1.2845 x 10^53828 |
35,800 | 2.5026 x 10^53858 | 5.3142 x 10^53888 | 1.2307 x 10^53919 | 3.1110 x 10^53949 | 8.5892 x 10^53979 | 2.5920 x 10^54010 | 8.5563 x 10^54040 | 3.0918 x 10^54071 | 1.2240 x 10^54102 | 5.3127 x 10^54132 |
35,900 | 2.5303 x 10^54163 | 1.3234 x 10^54194 | 7.6078 x 10^54224 | 4.8108 x 10^54255 | 3.3493 x 10^54286 | 2.5696 x 10^54317 | 2.1743 x 10^54348 | 2.0310 x 10^54379 | 2.0964 x 10^54410 | 2.3933 x 10^54441 |
36,000 | 3.0248 x 10^54472 | 4.2366 x 10^54503 | 6.5825 x 10^54534 | 1.1357 x 10^54566 | 2.1781 x 10^54597 | 4.6487 x 10^54628 | 1.1053 x 10^54660 | 2.9309 x 10^54691 | 8.6779 x 10^54722 | 2.8721 x 10^54754 |
36,100 | 1.0638 x 10^54786 | 4.4159 x 10^54817 | 2.0564 x 10^54849 | 1.0758 x 10^54881 | 6.3309 x 10^54912 | 4.1962 x 10^54944 | 3.1370 x 10^54976 | 2.6487 x 10^55008 | 2.5297 x 10^55040 | 2.7367 x 10^55072 |
36,200 | 3.3587 x 10^55104 | 4.6835 x 10^55136 | 7.4320 x 10^55168 | 1.3442 x 10^55201 | 2.7761 x 10^55233 | 6.5567 x 10^55265 | 1.7742 x 10^55298 | 5.5103 x 10^55330 | 1.9678 x 10^55363 | 8.0963 x 10^55395 |
36,300 | 3.8451 x 10^55428 | 2.1121 x 10^55461 | 1.3447 x 10^55494 | 9.9439 x 10^55526 | 8.5596 x 10^55559 | 8.5961 x 10^55592 | 1.0095 x 10^55626 | 1.3896 x 10^55659 | 2.2480 x 10^55692 | 4.2843 x 10^55725 |
36,400 | 9.6447 x 10^55758 | 2.5716 x 10^55792 | 8.1449 x 10^55825 | 3.0730 x 10^55859 | 1.3853 x 10^55893 | 7.4860 x 10^55926 | 4.8643 x 10^55960 | 3.8136 x 10^55994 | 3.6200 x 10^56028 | 4.1756 x 10^56062 |
36,500 | 5.8748 x 10^56096 | 1.0121 x 10^56131 | 2.1439 x 10^56165 | 5.6076 x 10^56199 | 1.8190 x 10^56234 | 7.3520 x 10^56268 | 3.7202 x 10^56303 | 2.3688 x 10^56338 | 1.9079 x 10^56373 | 1.9546 x 10^56408 |
36,600 | 2.5619 x 10^56443 | 4.3222 x 10^56478 | 9.4462 x 10^56513 | 2.6924 x 10^56549 | 1.0079 x 10^56585 | 4.9938 x 10^56620 | 3.3000 x 10^56656 | 2.9332 x 10^56692 | 3.5383 x 10^56728 | 5.8472 x 10^56764 |
36,700 | 1.3371 x 10^56801 | 4.2771 x 10^56837 | 1.9356 x 10^56874 | 1.2547 x 10^56911 | 1.1804 x 10^56948 | 1.6348 x 10^56985 | 3.3846 x 10^57022 | 1.0650 x 10^57060 | 5.1862 x 10^57097 | 3.9861 x 10^57135 |
36,800 | 4.9412 x 10^57173 | 1.0115 x 10^57212 | 3.5107 x 10^57250 | 2.1267 x 10^57289 | 2.3232 x 10^57328 | 4.7467 x 10^57367 | 1.8908 x 10^57407 | 1.5398 x 10^57447 | 2.7075 x 10^57487 | 1.0956 x 10^57528 |
36,900 | 1.1003 x 10^57569 | 3.0018 x 10^57610 | 2.4848 x 10^57652 | 7.1657 x 10^57694 | 8.6000 x 10^57737 | 5.4455 x 10^57781 | 2.5376 x 10^57826 | 1.4369 x 10^57872 | 2.3017 x 10^57919 | 6.0122 x 10^57968 |
37,000 | 2.9093 x 10^58023 |
Quote: ThatDonGuyCorrect - and that's what I used,Quote: weezrDASvegasQuote: ThatDonGuyIt's not that hard; I get 1 in 78.2.
Here's how:
The probability of getting 1000, say, zeroes in 37,000 spins of a single-zero wheel is (37,000)C(1000) x (1/37)1000 x (36/37)36,000
Most methods of calculating this would result in arithmetic overflows, but if you use logarithms and a spreadsheet, you can do it.
(37,000)C(1000) = 37,000 / 1 x 36,999 / 2 x 36,998 / 3 x ... x 36,002 / 999 x 36,001 / 1000
log ((37,000)C(1000)) = log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000
(1/37)1000 x (36/37)36,000 = 3636,000 / 3737,000
log ((1/37)1000 x (36/37)36,000) = 36,000 log 36 - 37,000 log 37
log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.
“log ((37,000)C(1000) x (1/37)1000 x (36/37)36,000) = log ((37,000)C(1000)) + log (1/37)1000 x (36/37)36,000)
= log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37
(37,000)C(1000) x (1/37)1000 x (36/37)36,000 = 10 to the power of (log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000 + 36,000 log 36 - 37,000 log 37) = about 1 / 78.19456.”
Boy, oh, boy!!!
REPEAT
THE FORMULA IN SANE MATHS IS ONLY ONE
BDF = C(N, M) * p^M * (1 — p)^(N — M)
There aint nothing else around this formula for M SUCCESSES IN N TRIALS, where M<=N
C(37,000, 1000) * (1/37)^1000 * (36/37)^36,000 = about 1 / 78.19456.
However, if you try calculating this, you get some incredibly large numbers - for example:C(37,000, 1000) = 479,276,699,178,809
,649,854,007,516,573,731,742,327,273,069
,805,016,086,657,405,455,109,799,606,702
,488,074,316,078,886,738,673,405,423,536
,935,995,180,640,134,170,351,203,927,583
,441,073,501,450,606,034,739,281,380,081
,266,971,643,546,937,157,336,662,888,922
,253,691,906,080,498,872,891,827,810,260
,123,627,597,442,890,261,235,017,526,349
,206,317,513,740,605,712,640,017,265,142
,974,688,761,487,034,690,463,696,780,162
,215,085,889,685,494,249,490,525,236,409
,469,240,814,649,833,608,046,768,129,786
,581,489,455,386,273,747,686,446,966,729
,405,118,683,652,656,515,783,092,956,219
,134,045,074,789,599,756,927,735,827,596
,658,822,553,856,917,516,397,236,435,813
,161,723,188,024,710,387,951,880,112,301
,158,825,892,566,463,810,963,013,768,882
,817,406,866,641,260,587,584,829,999,008
,147,384,380,458,874,009,596,572,030,879
,848,117,282,525,969,342,809,054,946,839
,342,858,681,545,894,890,490,336,636,103
,689,016,433,539,011,047,886,984,785,468
,380,720,407,098,050,506,787,090,587,675
,922,007,973,537,988,719,106,628,037,637
,201,188,379,455,839,387,495,776,823,185
,949,485,546,344,041,897,490,449,177,307
,306,200,622,994,704,372,960,416,193,336
,688,308,713,514,327,058,685,135,578,804
,394,060,159,144,923,559,645,007,689,684
,251,222,486,397,584,028,502,937,082,204
,358,533,104,641,877,406,718,240,282,261
,782,869,775,064,983,145,093,871,815,047
,611,226,716,711,985,847,297,826,933,578
,822,811,723,698,508,244,220,268,746,362
,471,556,340,712,370,272,754,537,463,366
,470,328,884,897,135,476,737,821,874,244
,866,467,383,847,786,965,458,952,998,588
,646,202,234,696,643,914,331,164,731,120
,696,118,602,946,955,042,436,415,360,583
,800,119,156,026,077,108,210,288,200,171
,543,780,460,665,972,025,328,483,787,834
,834,326,609,687,380,472,280,261,337,876
,258,947,467,008,777,949,621,986,484,591
,629,806,072,515,626,901,321,190,886,205
,758,970,285,393,041,086,834,041,780,080
,097,257,762,255,249,024,777,235,192,639
,390,351,457,284,466,347,596,327,472,028
,526,176,040,029,776,609,721,789,662,742
,918,233,956,273,583,373,632,927,934,549
,338,501,441,407,809,662,581,088,983,489
,387,476,400,674,188,551,714,927,652,671
,236,973,901,796,994,054,803,975,272,026
,083,124,171,733,928,272,977,188,321,254
,479,149,728,028,229,308,027,858,103,509
,046,658,217,579,332,379,673,689,007,685
,023,992,631,412,835,356,783,313,694,401
,502,082,353,166,957,744,010,576,726,927
,867,927,846,209,737,291,572,878,147,601
,030,873,362,980,407,225,271,549,165,836
,099,653,929,007,468,378,098,599,877,215
,417,732,947,321,440,475,756,911,637,413
,002,847,727,410,003,441,734,525,421,999
,551,574,325,706,603,163,072,805,655,372
,445,389,579,976,492,590,483,756,353,780
,275,903,959,095,519,952,117,190,925,440
That's a 1995-digit number
However, if you note a few things, it makes calculating it simpler:
10^(log N) = N
log (A * B) = log A + log B
log (A^B) = B log A
Let P be the value we are trying to calculate
P = C(37,000, 1000) * (1/37)^1000 * (36/37)^36,000
As shown in that spoiler box, C(37,000, 1000) = about 4.79277 * 10^1994
(1/37)^1000 = 1 / (37^1000), and (36/37)^36,000 = (36^36,000) / (37^36,000)
(1/37)^1000 * (36/37)^36,000 = (36^36,000) / (37^37,000)
So P = C(37,000, 1000) * (36^36,000) / (37^37,000)
log P = log (C(37,000, 1000) * (36^36,000) / (37^37,000))
= log (4.79277 * 10^1994) + log (36^36,000) - log (37^37,000)
= log 4.79277 + log (10^1994) + log (36^36,000) - log (37^37,000)
= 0.6806 + 1994 + 36,000 log (36) - 37,000 log (37)
= -1.8931763
P = 10^(log P) = 10^(-1.8931763) = about 1 / 78.1945.
Got it?
Also, some quick computing shows that 10^1058 is approximately the probability of zero coming up 3834 times in 37,000 spins.
Many dispute the accuracy of extremely large numbers like in your posts. what libraries you using and why you trust them? and whats the probability of exactly 500 heads in 1000 cointosses according to your algorithm?
your first algo was different… very long starting with log1 ending with log(1000) and had 1000 steps working with extremely long numbers…
(37,000)C(1000) = 37,000 / 1 x 36,999 / 2 x 36,998 / 3 x ... x 36,002 / 999 x 36,001 / 1000
log ((37,000)C(1000)) = log 37,000 - log 1 + log 36,999 - log 2 + ... + log 36,001 - log 1000
Also, some quick computing shows that 10^1058 is approximately the probability of zero coming up 3834 times in 37,000 spins.
10^1058 is a very large number.. way above 1 probability is between 0 and 1.
we talkin here probability of EXACTLY, right? like I sez above
* probability EXACTLY 500 successes in 1000 trials: 2.5% (you might figure 50%) – but
* probability AT LEAST 500 successes in 1000 trials: 51.3%
* probability AT MOST 500 successes in 1000 trials: 51.3%.
Quote: weezrDASvegasMany dispute the accuracy of extremely large numbers like in your posts. what libraries you using and why you trust them? and whats the probability of exactly 500 heads in 1000 cointosses according to your algorithm?
I use the Microsoft .NET BigInteger library.
"My algorithm" is the same as yours - I'll even use your naming convention for combinations:
p = C(1000,500) x (1/2)^500 x (1/2)^500
= C(1000,500) / (2^1000)
C(1000, 500) =
270,288,240,945,436,569,515,614,693,625,975,275,496,152,008,446,548,287,007,392
,875,106,625,428,705,522,193,898,612,483,924,502,370,165,362,606,085,021,546,104
,802,209,750,050,679,917,549,894,219,699,518,475,423,665,484,263,751,733,356,162
,464,079,737,887,344,364,574,161,119,497,604,571,044,985,756,287,880,514,600,994
,219,426,752,366,915,856,603,136,862,602,484,428,109,296,905,863,799,821,216,320
2^1000 =
10,715,086,071,862,673,209,484,250,490,600,018,105,614,048,117,055,336,074,437,503
,883,703,510,511,249,361,224,931,983,788,156,958,581,275,946,729,175,531,468,251
,871,452,856,923,140,435,984,577,574,698,574,803,934,567,774,824,230,985,421,074
,605,062,371,141,877,954,182,153,046,474,983,581,941,267,398,767,559,165,543,946
,077,062,914,571,196,477,686,542,167,660,429,831,652,624,386,837,205,668,069,376
4,223,253,764,772,446,398,681,479,587,905,863,679,627,375,131,977,316,984,490
,513,673,541,022,323,523,784,279,665,820,061,320,349,533,833,790,720,078,461,657
,887,534,527,344,541,873,711,717,097,182,804,976,178,494,773,191,621,120,833,690
,038,501,245,904,489,755,696,471,267,492,150,071,422,577,902,441,998,133,040,640
,534,678,543,005,733,060,259,424,013,478,163,819,189,207,764,154,121,872,206,505
-- divided by --
167,423,219,872,854,268,898,191,413,915,625,282,900,219,501,828,989,626,163,085
,998,182,867,351,738,271,269,139,562,246,689,952,477,832,436,667,643,367,679,191
,435,491,450,889,424,069,312,259,024,604,665,231,311,477,621,481,628,609,147,204
,290,704,099,549,091,843,034,096,141,351,171,618,467,832,303,105,743,111,961,624
,157,454,108,040,174,944,963,852,221,369,694,216,119,572,256,044,331,338,563,584
This is about 2.5225%, or about 1 / 39.64
My original algorithm was just the "standard" one, but using logarithms and then exponentials because otherwise the numbers would overflow most computers.
Math lesson of the day: if "log" is the base 10 logarithm, 10^(log x) = x
(for "natural" logarithms ln( ), e^(ln x) = x)
For all bases of logarithms, log ab = log a + log b, and log (a^b) = b log a
The original was p = C(37,000, 1000) x (1/37)^1000 x (36/37)^36,000
C(37,000, 1000) = (37,000 x 36,999 x ... x 36,001) / (1000 x 999 x 998 x ... x 1)
log p = log( (37,000 x 36,999 x ... x 36,001) / (1000 x 999 x 998 x ... x 1) x (1/37)^1000 x (36/37)^36,000)
= log ( (37,000 x 36,999 x ... x 36,001) / (1000 x 999 x 998 x ... x 1) x (1^1000 x 36^36,000) / (37^37,000)
= log ( (37,000 x 36,999 x ... x 36,001) / (1000 x 999 x 998 x ... x 1) x 36^36,000 / 37^37,000 ) (since 1^1000 = 1)
= log (37,000 x 36,999 x ... x 36,001) - log (1000 x 999 x 998 x ... x 1) + log (36^36,000) - log (37^37,000)
= log 37,000 + log 36,999 + ... + log 36,001 - log 1000 - log 999 - ... - log 1 + 36,000 log 36 - 37,000 log 37
This can be handled in, for example, an Excel spreadsheet; you then raise 10 to this power to get p.
You got me on that one. I meant 1 / 10^1058, which is what you claimed was the probability of exactly 1000 wins in 37,000 spins, on the second post of page 2 of this thread. You never did explain just how you got that number, other than "SuperFormula.exe calculus."Quote: weezrDASvegas10^1058 is a very large number.. way above 1 probability is between 0 and 1.
Then again, I just figured it out; 1 in 2.50991163241154E+1058 is the probability of getting exactly 1000 wins in 1754 spins.