Poll

1 vote (14.28%)
1 vote (14.28%)
2 votes (28.57%)
No votes (0%)
No votes (0%)
3 votes (42.85%)
3 votes (42.85%)
2 votes (28.57%)
1 vote (14.28%)
4 votes (57.14%)

7 members have voted

Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
December 31st, 2018 at 4:05:33 PM permalink
A semi-circle is inscribed in a quarter-circle as follows:



What is the ratio of the area of the semi-circle to the quarter-circle?

As usual, no searching and put answers/solutions in spoiler tags.

My thanks to Dalex64 for this problem.

p.s. Looks like I'll be spending New Years Eve at home, as usual. If you have any good math problems to help me kill the time until midnight, please PM me.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
teliot
teliot
  • Threads: 43
  • Posts: 2871
Joined: Oct 19, 2009
December 31st, 2018 at 4:45:57 PM permalink
Quote: Wizard

p.s. Looks like I'll be spending New Years Eve at home, as usual. If you have any good math problems to help me kill the time until midnight, please PM me.


One of my favorites ... without using a calculator, which is larger, pi^e or e^pi ?
Climate Casino: https://climatecasino.net/climate-casino/
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
December 31st, 2018 at 6:08:04 PM permalink
Quote: teliot

One of my favorites ... without using a calculator, which is larger, pi^e or e^pi ?



I was messing around with Taylor expansions, which lead nowhere. Eventually, I cheated and looked up the answer. What is my punishment?

"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
teliot
teliot
  • Threads: 43
  • Posts: 2871
Joined: Oct 19, 2009
December 31st, 2018 at 6:50:51 PM permalink
Quote: Wizard

I was messing around with Taylor expansions, which lead nowhere. Eventually, I cheated and looked up the answer. What is my punishment?

As punishment, you must do the dance in this video:

Climate Casino: https://climatecasino.net/climate-casino/
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27036
Joined: Oct 14, 2009
December 31st, 2018 at 7:36:15 PM permalink
Quote: teliot

As punishment, you must do the dance in this video:



Can I take door #2? Even compared to most white males, I'm an awful dancer.

BTW, I'm still waiting on an answer to the original problem.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
teliot
teliot
  • Threads: 43
  • Posts: 2871
Joined: Oct 19, 2009
December 31st, 2018 at 7:53:21 PM permalink
Quote: Wizard

Can I take door #2? Even compared to most white males, I'm an awful dancer.

BTW, I'm still waiting on an answer to the original problem.

Door #2. Take out your phone and ask Google Assistant (or Siri) to count backwards from 100.

I've seen many puzzles like this one over the years ... they were never that interesting to me.

If you want to pass some quality time with some truly fascinating math, there is a brilliant YouTube series on big numbers I'd suggest.

Climate Casino: https://climatecasino.net/climate-casino/
DogHand
DogHand
  • Threads: 2
  • Posts: 1806
Joined: Sep 24, 2011
December 31st, 2018 at 9:15:20 PM permalink
Quote: Wizard

A semi-circle is inscribed in a quarter-circle as follows:



What is the ratio of the area of the semi-circle to the quarter-circle?

As usual, no searching and put answers/solutions in spoiler tags.

My thanks to Dalex64 for this problem.

p.s. Looks like I'll be spending New Years Eve at home, as usual. If you have any good math problems to help me kill the time until midnight, please PM me.



Wizard,

My solution:

Without loss of generality, we can let the radius of the semi-circle be 1 and the radius of the quarter-circle be r. Then, the desired ratio R is given by

R = (pi/2)*r²/(pi/4) = 2*r²

Now we need to calculate r.

Since the diameter (of length 2*r) of the quarter-circle is also a chord of the semi-circle, we know from geometry that

2 = r²/x + x

where x is the distance along the quarter-circle's radius from the edge of the quarter-circle to the chord. A bit of geometry tells us that

x = 1 - r*sqrt(2)

Inserting this into the previous equation and solving for r² gives

r² = 1/3

Finally, plugging this into the R equation gives the result

R = 2/3



Fun puzzle... and Happy New Year!

Dog Hand
CrystalMath
CrystalMath
  • Threads: 8
  • Posts: 1911
Joined: May 10, 2011
December 31st, 2018 at 9:35:43 PM permalink

Let the radius of the red area be 1.

The point where the lower right of the semi circle intersects with the quarter circle is (1+sqrt(2)/2)rblue, (1-sqrt(2)/2)rblue.

Plugging this point into the equation for the red circle (x2 + y2 = 1), we get 3rblue2 = 1.

Ablue = pi/6

Ared = pi/4

Ablue/Ared = 2/3
I heart Crystal Math.
billryan
billryan
  • Threads: 247
  • Posts: 17004
Joined: Nov 2, 2009
January 1st, 2019 at 8:26:46 AM permalink
Quote: teliot

As punishment, you must do the dance in this video:




This would be sooo much better in cargo shorts.
The older I get, the better I recall things that never happened
ThatDonGuy
ThatDonGuy
  • Threads: 122
  • Posts: 6678
Joined: Jun 22, 2011
January 1st, 2019 at 8:27:21 AM permalink
Quote: teliot

One of my favorites ... without using a calculator, which is larger, pi^e or e^pi ?


To be fair, I've seen this one before (it's in Litton's Problematical Recreations).


For all non-negative real numbers x <> e, ex > xe

Proof:
Let f(x) = ln x / x
The first derivative, f'(x) = (x * (1/x) - ln x * 1) / x2 = (1 - ln x) / x2; this is 0 when x = e
The second derivative, f''(x), is negative when x = e, so x = e is a maximum for f(x)
ln e / e > ln x / x for 0 <= x <> e
Since ex is strictly increasing, eln e / e > eln x / x
(eln e)1/e > (eln x)1/x
e1/e > x1/x
(e1/e)ex > (x1/x)ex
ex > xe



Quote: Wizard

A semi-circle is inscribed in a quarter-circle as follows...

What is the ratio of the area of the semi-circle to the quarter-circle?


My answer appears to be similar to Teliot's:


Without loss of generality, let the quarter-circle have radius 1, and the semi-circle have radius R
Let A and B be the endpoints of the chord of the large circle that is also the diameter of the small circle
M the midpoint of AB (which is also the center of the semicircle)
O the center of the quarter-circle

The line segments from M to the two tangent points have length R and are perpendicular to the sides of the quarter-circle, so OM = R sqrt(2) / 2
OA = OB = 1, and MA = MB = R/2, so OMA and OMB are (side-side-side) congruent, which means angle OMA is a right angle
Pythagorean Theorem: MA = sqrt(1 - 2 R2)
MA is also a radius of the semi-circle, so R = sqrt(1 - 2 R2)
R2 = 1 - 2 R2
R2 = 1/3
The area of the quarter-circle = 1/4 PI
The area of the semi-circle = (PI x 1/3) / 2 = 1/6 PI = 1/4 PI x 2/3 = 2/3 the area of the quarter-circle

Last edited by: ThatDonGuy on Jan 1, 2019
  • Jump to: