infiltratioz
infiltratioz
Joined: Aug 15, 2011
  • Threads: 4
  • Posts: 9
August 21st, 2011 at 10:11:53 AM permalink
Just recently I went to a casino in malaysia johor jaya. They offer this dead chip programme in which they will reimburse you 1% of your buy in while the chips provided will be non-negotiable. For example, if I buy in for 1000 dollars, they will pay me 1000 in non-negotiable chips and 10 dollars (1% of 1000) in cash. After you have completed wagering, (in other words losing all the non-neg chips while left with only the cash chips) you may choose to buy the non negotiable chips again while getting the 1% rebate.

There is a blackjack game there which uses a card shuffling machine with the following rules.

Stand soft 17
Double after split
No surrender
Double only on 9,10 & 11
Able to respilt to 4 hands
Split aces get one card only
Player loses all bet against dealer's BJ
Blackjack pay 3:2
Dealer does not check for blackjack regardless of 10 or A
6 decks (maybe 5)
Shuffle after 1 deck has been accumulated in the discard pile

I understand from one of the wizard's articles that the best way to convert non-negotiable chips to cash chips is to play blackjack as the non-neg chips is able to retain 99.61% of its value (the highest among all the different games) according to a slightly different set of BJ rules.

My questions are

What is the house edge for the BJ using basic strategy with the following rules?
How much does the rebate scheme reduce the house edge for such a BJ game?
odiousgambit
odiousgambit
Joined: Nov 9, 2009
  • Threads: 286
  • Posts: 7826
August 21st, 2011 at 10:31:47 AM permalink
use his calculator to get the the house edge. The difference between the edge and 1 should be the return I think. My first thought is 99.6 return + 1% in rebate = 100.6% total return, if the house edge was .4%, maybe somebody can confirm that.
the next time Dame Fortune toys with your heart, your soul and your wallet, raise your glass and praise her thus: “Thanks for nothing, you cold-hearted, evil, damnable, nefarious, low-life, malicious monster from Hell!” She is, after all, stone deaf. ... Arnold Snyder
crazyiam
crazyiam
Joined: Feb 5, 2010
  • Threads: 0
  • Posts: 44
August 21st, 2011 at 11:41:16 AM permalink
My take on this rule is only winnings are paid in cashable chips. So if you bet $1000 in an even money game at a house advantage of .4% you end up with an ev of $498 of cashable chips and $498 of non-cashable chips. Repeating the infinite sequence until no non cashable chips are left results in about $8 (actually just a bit less) lost or about $2 in profit.

Of course you do a bit better in blackjack since the $996 of ev will contain a few more cashable chips. Not a large amount. Overall the lower the HE or the higher some payouts are the better this is for the player. However, its not largely positive unless comps are included as well.
odiousgambit
odiousgambit
Joined: Nov 9, 2009
  • Threads: 286
  • Posts: 7826
August 21st, 2011 at 12:22:20 PM permalink
Quote: crazyiam

My take on this rule is only winnings are paid in cashable chips. So if you bet $1000 in an even money game at a house advantage of .4% you end up with an ev of $498 of cashable chips and $498 of non-cashable chips. Repeating the infinite sequence until no non cashable chips are left results in about $8 (actually just a bit less) lost or about $2 in profit.

Of course you do a bit better in blackjack since the $996 of ev will contain a few more cashable chips. Not a large amount. Overall the lower the HE or the higher some payouts are the better this is for the player. However, its not largely positive unless comps are included as well.



.6% is about 6 dollars, so possibly we are saying about the same thing. However, you highlight one thing: getting such a large percentage of non-negotiables would be maddening unless there is some way to bank them.
the next time Dame Fortune toys with your heart, your soul and your wallet, raise your glass and praise her thus: “Thanks for nothing, you cold-hearted, evil, damnable, nefarious, low-life, malicious monster from Hell!” She is, after all, stone deaf. ... Arnold Snyder
crazyiam
crazyiam
Joined: Feb 5, 2010
  • Threads: 0
  • Posts: 44
August 21st, 2011 at 1:51:28 PM permalink
Quote: odiousgambit

.6% is about 6 dollars, so possibly we are saying about the same thing. However, you highlight one thing: getting such a large percentage of non-negotiables would be maddening unless there is some way to bank them.



I"m saying that the ev for an even money game is about (1-HE)*2 + .01. Though I could be reading how payment is processed wrong. The OP should let us know who's interpretation is right.
infiltratioz
infiltratioz
Joined: Aug 15, 2011
  • Threads: 4
  • Posts: 9
August 21st, 2011 at 9:33:30 PM permalink
The house edge for the above game is roughly 0.62 % according to the calculator. So 2 times 0.62 is 1.24. Hence value of the non negotiable chip is roughly 98.76, hence this is not a positive ev game. The house edge is cut by 60% (HE: 0.24%) if using non-negotiable chips to play. Thanks for all the posts.

  • Jump to: