February 8th, 2015 at 8:43:39 PM
permalink
I've encountered many people in the California card room industry that don't understand that the concept of offering "even money" for a blackjack when the dealer is showing an ace is merely a shortcut for buying insurance in that situation. The card rooms are constantly pushing to make their game "vegas style." The problem is that these games pay a natural BJ at 1.2X rather than 1.5X. This makes offering traditional even money impossible as the outcome of a winning insurance bet differs from winning the natural.
Because some managers can't easily grasp this notion and still push to offer even money, I was wondering how offering even money decreases the house edge.
Because some managers can't easily grasp this notion and still push to offer even money, I was wondering how offering even money decreases the house edge.
February 8th, 2015 at 9:09:44 PM
permalink
Quote: grootegoedI've encountered many people in the California card room industry that don't understand that the concept of offering "even money" for a blackjack when the dealer is showing an ace is merely a shortcut for buying insurance in that situation. The card rooms are constantly pushing to make their game "vegas style." The problem is that these games pay a natural BJ at 1.2X rather than 1.5X. This makes offering traditional even money impossible as the outcome of a winning insurance bet differs from winning the natural.
Because some managers can't easily grasp this notion and still push to offer even money, I was wondering how offering even money decreases the house edge.
You're only paying 20% of your bet instead of the normal 50% to insure your whole bet. This makes taking insurance a profitable decision for the player everytime. The delaer has bj 31% of the time. You get paid 2:1. You put out 50%. You retain 92.5% of that money; losing 7.5% to the house on insurance, since most of the time the dealer doesn't have blackjack. Let's look at only putting out 20%. Dealer has bj 31% of the time. You're getting paid 5:1. You put out 20%. You retain 154% of that money, since sometimes the dealer has blackjack and you would have otherwise received nothing. I think I did the math right. This doesn't really matter, since the rules of your game are horrible, and taking even money is BS in 6:5.
February 8th, 2015 at 9:42:19 PM
permalink
Are any of the Indian places doing this, or just the Cal places?
February 9th, 2015 at 7:56:38 AM
permalink
An actual insurance bet is treated the same as in traditional bj and always pays 2x as a side bet. The issue at hand is that this casino does not treat even money as an insurance bet at all. If you have a natural and the dealer has an ace they will offer you even money. It is by far the better play to take it. Not taking even money here results in roughly a 15% decrease in EV. (10/10 wins vs 7 wins at 1.2X and 3 pushes).
The main issue here is that taking insurance on a natural in regular blackjack will always result on the same outcome, hence the even money payout. This is not true on bj games that only pay 6/5 on a natural.
Based on one unit wagered on insured natural:
Reg BJ- dealer has natural, insurance wins (0.5x2) hand pushes, result win 1 unit
dealer no natural, base bet wins 1.5 - losing insurance 0.5 result win 1 unit
No bust- dealer has natural, insurance wins (0.5x2) hand pushes, result win 1 unit
dealer no natural, base bet wins 1.2- losing insurance 0.5 redult won 0.7 unit
So there is no basis for even offering even money and undoubtedly
The better play to take it iff offered as the net result is winning 1 unit
Vs playing it out for a net win of 0.85 unit
The main issue here is that taking insurance on a natural in regular blackjack will always result on the same outcome, hence the even money payout. This is not true on bj games that only pay 6/5 on a natural.
Based on one unit wagered on insured natural:
Reg BJ- dealer has natural, insurance wins (0.5x2) hand pushes, result win 1 unit
dealer no natural, base bet wins 1.5 - losing insurance 0.5 result win 1 unit
No bust- dealer has natural, insurance wins (0.5x2) hand pushes, result win 1 unit
dealer no natural, base bet wins 1.2- losing insurance 0.5 redult won 0.7 unit
So there is no basis for even offering even money and undoubtedly
The better play to take it iff offered as the net result is winning 1 unit
Vs playing it out for a net win of 0.85 unit
February 9th, 2015 at 7:57:19 AM
permalink
Not at indian casinos or even all the cardrooms
February 10th, 2015 at 6:54:00 AM
permalink
Quote: grootegoedI was wondering how offering even money decreases the house edge.
i assume 6 decks.
Hand is BJ v A
Frequency is 0.3523%
EV (payout 1,2) is : (214/309 * 120%) + (95/309 * 0) = 83,11%.
With Even Money you get paid 100% instead of 83,11%.
EV Gain on the Hand = 100% - 83,11% = 16,89%
EV Gain = 16,89% * 0,3523% = 0,06%
So very small increase in EV if you get it.
It makes you wonder why casinos do not offer Even Money on BJ in the 6:5 games.
Where I come from all casinos pay 3:2 and offer Even Money on BJs and almost all players get the even money on BJs.
I bet that if casinos where to change the game to 6:5 players will not be so unhappy as opposed to not been offered Even Money on BJ.
Casinos with BJ paying 6:5 could easily offer Even Money on BJs (to keep players happy) with minimal cost to them.