Poll

5 votes (62.5%)
1 vote (12.5%)
No votes (0%)
1 vote (12.5%)
1 vote (12.5%)
1 vote (12.5%)
1 vote (12.5%)
2 votes (25%)
2 votes (25%)
1 vote (12.5%)

8 members have voted

Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27037
Joined: Oct 14, 2009
February 27th, 2018 at 11:50:03 AM permalink
One of the unsolved problems of mathematics, that can be stated easily in simple English, is what I'll call the 3n+1 problem, although it goes by many names, mostly mathematicians who have studied it. Here is the problem:

  1. Use any positive integer as a starting value. Call it x.
  2. If x is even, then divide it by 2. In other words x=x/2. Then, go to step 4.
  3. Otherwise, if x is odd, then triple is first and then add one. In other words, x=3x+1.
  4. If x>1, then go back to step 2


Any starting value of x will eventually lead to 1. This has been shown for every integer up to enormous numbers. The challenge is to prove this happens for every starting value. The alternative to going to 1 would be either going up forever or getting into a loop that doesn't include 1.

Here is what happens with starting values from 1 to 100. Starting values are in highlighted cells.


1
21
310 5 16 8 4 2 1
42 1
516 8 4 2 1
63 10 5 16 8 4 2 1
722 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
84 2 1
928 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
105 16 8 4 2 1
1134 17 52 26 13 40 20 10 5 16 8 4 2 1
126 3 10 5 16 8 4 2 1
1340 20 10 5 16 8 4 2 1
147 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
1546 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
168 4 2 1
1752 26 13 40 20 10 5 16 8 4 2 1
189 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2
1
1958 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2
1
2010 5 16 8 4 2 1
2164 32 16 8 4 2 1
2211 34 17 52 26 13 40 20 10 5 16 8 4 2 1
2370 35 106 53 160 80 40 20 10 5 16 8 4 2 1
2412 6 3 10 5 16 8 4 2 1
2576 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16
8 4 2 1
2613 40 20 10 5 16 8 4 2 1
2782 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91
274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890
445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438
719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308
1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106
53 160 80 40 20 10 5 16 8 4 2 1
2814 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
2988 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
3015 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
3194 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103
310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167
502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619
4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433
1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20
10 5 16 8 4 2 1
3216 8 4 2 1
33100 50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20
10 5 16 8 4 2 1
3417 52 26 13 40 20 10 5 16 8 4 2 1
35106 53 160 80 40 20 10 5 16 8 4 2 1
3618 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4
2 1
37112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4
2 1
3819 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4
2 1
39118 59 178 89 268 134 67 202 101 304 152 76 38 19 58 29 88 44 22
11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
4020 10 5 16 8 4 2 1
41124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137
412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336
668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158
1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577
1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160
80 40 20 10 5 16 8 4 2 1
4221 64 32 16 8 4 2 1
43130 65 196 98 49 148 74 37 112 56 28 14 7 22 11 34 17 52 26
13 40 20 10 5 16 8 4 2 1
4422 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
45136 68 34 17 52 26 13 40 20 10 5 16 8 4 2 1
4623 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
47142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155
466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251
754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429
7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650
325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5
16 8 4 2 1
4824 12 6 3 10 5 16 8 4 2 1
49148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5
16 8 4 2 1
5025 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5
16 8 4 2 1
51154 77 232 116 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5
16 8 4 2 1
5226 13 40 20 10 5 16 8 4 2 1
53160 80 40 20 10 5 16 8 4 2 1
5427 82 41 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182
91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780
890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479
1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616
2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35
106 53 160 80 40 20 10 5 16 8 4 2 1
55166 83 250 125 376 188 94 47 142 71 214 107 322 161 484 242 121 364 182
91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780
890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479
1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616
2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35
106 53 160 80 40 20 10 5 16 8 4 2 1
5628 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
57172 86 43 130 65 196 98 49 148 74 37 112 56 28 14 7 22 11 34
17 52 26 13 40 20 10 5 16 8 4 2 1
5829 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
59178 89 268 134 67 202 101 304 152 76 38 19 58 29 88 44 22 11 34
17 52 26 13 40 20 10 5 16 8 4 2 1
6030 15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
61184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
6231 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206
103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334
167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238
1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866
433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40
20 10 5 16 8 4 2 1
63190 95 286 143 430 215 646 323 970 485 1456 728 364 182 91 274 137 412 206
103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334
167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238
1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866
433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40
20 10 5 16 8 4 2 1
6432 16 8 4 2 1
65196 98 49 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40
20 10 5 16 8 4 2 1
6633 100 50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40
20 10 5 16 8 4 2 1
67202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40
20 10 5 16 8 4 2 1
6834 17 52 26 13 40 20 10 5 16 8 4 2 1
69208 104 52 26 13 40 20 10 5 16 8 4 2 1
7035 106 53 160 80 40 20 10 5 16 8 4 2 1
71214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233
700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377
1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644
1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976
488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8
4 2 1
7236 18 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8
4 2 1
73220 110 55 166 83 250 125 376 188 94 47 142 71 214 107 322 161 484 242
121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395
1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638
319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154
3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46
23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
7437 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8
4 2 1
75226 113 340 170 85 256 128 64 32 16 8 4 2 1
7638 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8
4 2 1
77232 116 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8
4 2 1
7839 118 59 178 89 268 134 67 202 101 304 152 76 38 19 58 29 88 44
22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
79238 119 358 179 538 269 808 404 202 101 304 152 76 38 19 58 29 88 44
22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
8040 20 10 5 16 8 4 2 1
81244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8
4 2 1
8241 124 62 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274
137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445
1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719
2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154
577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53
160 80 40 20 10 5 16 8 4 2 1
83250 125 376 188 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274
137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445
1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719
2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154
577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53
160 80 40 20 10 5 16 8 4 2 1
8442 21 64 32 16 8 4 2 1
85256 128 64 32 16 8 4 2 1
8643 130 65 196 98 49 148 74 37 112 56 28 14 7 22 11 34 17 52
26 13 40 20 10 5 16 8 4 2 1
87262 131 394 197 592 296 148 74 37 112 56 28 14 7 22 11 34 17 52
26 13 40 20 10 5 16 8 4 2 1
8844 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
89268 134 67 202 101 304 152 76 38 19 58 29 88 44 22 11 34 17 52
26 13 40 20 10 5 16 8 4 2 1
9045 136 68 34 17 52 26 13 40 20 10 5 16 8 4 2 1
91274 137 412 206 103 310 155 466 233 700 350 175 526 263 790 395 1186 593 1780
890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425 1276 638 319 958 479
1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616
2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35
106 53 160 80 40 20 10 5 16 8 4 2 1
9246 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
93280 140 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
9447 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310
155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502
251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858
2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300
650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10
5 16 8 4 2 1
95286 143 430 215 646 323 970 485 1456 728 364 182 91 274 137 412 206 103 310
155 466 233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502
251 754 377 1132 566 283 850 425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858
2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300
650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20 10
5 16 8 4 2 1
9648 24 12 6 3 10 5 16 8 4 2 1
97292 146 73 220 110 55 166 83 250 125 376 188 94 47 142 71 214 107 322
161 484 242 121 364 182 91 274 137 412 206 103 310 155 466 233 700 350 175 526
263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850
425 1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367
4102 2051 6154 3077 9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61
184 92 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
9849 148 74 37 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10
5 16 8 4 2 1
99298 149 448 224 112 56 28 14 7 22 11 34 17 52 26 13 40 20 10
5 16 8 4 2 1
10050 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10
5 16 8 4 2 1


No particular question here but I've been wasting time on this problem lately and have made some interesting observations. I'll share them later if anyone else seems interested in this.

The question for the poll is which statements do you agree with?
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
RS
RS
  • Threads: 62
  • Posts: 8626
Joined: Feb 11, 2014
February 27th, 2018 at 12:21:39 PM permalink
Previous discussion on this: https://wizardofvegas.com/forum/questions-and-answers/math/24489-n-3x-1/
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27037
Joined: Oct 14, 2009
February 27th, 2018 at 12:24:46 PM permalink
Quote: RS

Previous discussion on this: https://wizardofvegas.com/forum/questions-and-answers/math/24489-n-3x-1/



I knew this problem seemed familiar.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
ThatDonGuy
ThatDonGuy
  • Threads: 122
  • Posts: 6679
Joined: Jun 22, 2011
February 27th, 2018 at 12:48:32 PM permalink
If you still want to talk about something that's known to be true for a significant number of numbers but not yet proven true for all of them, how about Goldbach's Conjecture - all even numbers greater than 2 can be expressed as the sum of two (not necessarily different) primes?

Meanwhile, here's a problem from the most recent Mathematical Association of America's high school math exam (worded slightly differently):

Two random numbers are chosen by a computer - A, which is uniformly chosen between 0 and 6 (note that A is not necessarily an integer), and B, which is uniformly chosen between 3 and 4. Without knowing either value of A or B in advance, what number should you choose so that the probability that your number is somewhere between A and B is maximized?
100xOdds
100xOdds
  • Threads: 661
  • Posts: 4540
Joined: Feb 5, 2012
February 27th, 2018 at 1:13:24 PM permalink
some babble I vaguely remember in Diffy Q's class:
take the integral (or derivative?) using the limit as X approaches infinity? (x --> )

did I solve it? :)

edit:
hm.. this forum treats 'alt 236' ascii symbol differently
Craps is paradise (Pair of dice). Lets hear it for the SpeedCount Mathletes :)
prozema
prozema
  • Threads: 25
  • Posts: 1222
Joined: Oct 24, 2016
February 27th, 2018 at 1:56:02 PM permalink
I woke up this morning thinking I'd solve a problem that has escaped all humanity to date. Here it goes...

After you do step 3, you always have an even positive number going into step 4 that is number 4 or greater... So step 3 always leads to step 2.

What I don't know how to explain is how steps 2 and 3 combined always get you to a number that is a positive power of 2... (2^x)

Once you are there, rule 2 will always get you an even result until you eventually land at number 1 which ends the loop.

Ok, I guess I didn't prove anything.
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27037
Joined: Oct 14, 2009
February 27th, 2018 at 2:10:22 PM permalink
There is a whole root system of numbers that eventually lead to zero. There is a fork at every number which can be expressed as 6n+4, where n is an integer. With a fork every sixth number it is not surprising that most numbers lead to one eventually. Why none escape this root system is the question.
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
ThatDonGuy
ThatDonGuy
  • Threads: 122
  • Posts: 6679
Joined: Jun 22, 2011
Thanked by
100xOdds
February 27th, 2018 at 2:25:11 PM permalink
Quote: 100xOdds


take the integral (or derivative?) using the limit as X approaches infinity? (x --> )

hm.. this forum treats 'alt 236' ascii symbol differently


"Alt-236" is "OEM ASCII" 236; it is not "Windows ASCII" 236, which is ì (and is entered with Alt-0236).

Let me try it: ∞ (that "should be" an infinity symbol)
prozema
prozema
  • Threads: 25
  • Posts: 1222
Joined: Oct 24, 2016
February 27th, 2018 at 2:38:10 PM permalink
I think geometric serieses (is that a word?) is how people way smarter than me invented calculus. I think that's what we are dealing with here, and it is notably above my pay grade.

I'll pipe down and let the smart people talk now.
Wizard
Administrator
Wizard
  • Threads: 1518
  • Posts: 27037
Joined: Oct 14, 2009
February 27th, 2018 at 3:03:48 PM permalink
Quote: prozema

I think geometric serieses (is that a word?) is how people way smarter than me invented calculus. I think that's what we are dealing with here, and it is notably above my pay grade.



I think this is a whole different branch of math than calculus. Then again, maybe you're seeing a connection that escapes me. In fact, I have a theory there is an undiscovered branch of mathematics, some kind of number theory, that would provide easy answers to lots of unanswered problems like this, especially in the realm of prime numbers.

This is the kind of thing that fascinates me.


Direct link: https://www.youtube.com/watch?v=YsaRJgm0xac
"For with much wisdom comes much sorrow." -- Ecclesiastes 1:18 (NIV)
gordonm888
Administrator
gordonm888 
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
February 27th, 2018 at 3:15:26 PM permalink
I've seen this problem before in a list of unsolved mathematical problems. I agree its fascinating, and I also agree that it is not calculus nor a geometric series.

I'll look at it when I get a free moment -then maybe I'll be ready to hear the Wiz's observations.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
prozema
prozema
  • Threads: 25
  • Posts: 1222
Joined: Oct 24, 2016
February 27th, 2018 at 4:14:17 PM permalink
The geometric series occours when the number gets to an x power of 2. It always reduces to 1 after you get there. Why the number always gets to a power of 2 making a geometric reduction to 1 is the tough part to show.

If I have a geometric series that converges on 0, the sum of that series fills the area under the curve in calculus. I want to say it was a specific series, but I don't remember.

I'm might be wrong, but that's what I was thinking.

Anyway... I recall one of my masters instructors (economics) used to tell stories about a guy who got a PhD in numbers. I think he was from Denver and I'm old enough that it was before weed was legal.
100xOdds
100xOdds
  • Threads: 661
  • Posts: 4540
Joined: Feb 5, 2012
Thanked by
RS
February 28th, 2018 at 6:40:52 AM permalink
where's the poll option of 'I stopped beating my wife'?
Craps is paradise (Pair of dice). Lets hear it for the SpeedCount Mathletes :)
gordonm888
Administrator
gordonm888 
  • Threads: 61
  • Posts: 5357
Joined: Feb 18, 2015
February 28th, 2018 at 9:17:27 AM permalink
Internet research revealed that there has certainly been a lot of work on this problem. I would summarize some of the research that I surveyed as:

1. Defining a parameter that is the length of an x/2|3x+1 sequence required to converge to 1, and then studying how that length parameter varies withe the value of x. For example, the maximum length of a sequence produced by the x/2|3x+1 system when x0 = (1 to n) is observed to increase with n in less than a linear fashion.

2. Generalizing the problem and then defining different categories of the generalized problem statement according to the characteristics of the sequences that are produced.

3. Analyzing the "cycles" or "loops" that number sequences can get into and defining different categories of these cycles/loops.

-trying to define the characteristics of a cycle that would loop forever without converging to 1 and then evaluating whether the x/2|3x+1 system could produce it.
- trying to define characteristics of x that would lead the x/2|3x+1 system to produce sequences of numbers that do not loop and generally grow in magnitude forever
- evaluating characteristics of the up/down movement of the sequences produced by x/2|3x+1 as a function of the initial value of x

4. Mapping the sequences onto graphs with elegantly-defined axes and studying the patterns that are produced.

It goes without saying that none of these approaches have yet proven or disproven the 3n+1 hypothesis, although certain categories of initial values of x have been shown to always produce sequences that terminate in 1.
*********************
I have a couple of ideas for possible approaches to analyze this problem. I want to spend a couple of hours working on them first, but then I'll share the ideas by posting them here. Naturally, I'm curious as to what the Wiz has done and would be happy to kibitz if I'm capable of it.
So many better men, a few of them friends, are dead. And a thousand thousand slimy things live on, and so do I.
  • Jump to: