Thread Rating:
June 22nd, 2015 at 1:14:04 PM
permalink
Just want to make sure I am figuring this right. In baccarat given 8 consecutive hands I want to figure out how many different ways it can happen with ties being excluded. Is it simply the 8 hands to the power of possible outcomes per hand (8^2=64)?
"I'm not superstitious but I am a little stitious." -Michael Scott
June 22nd, 2015 at 1:16:10 PM
permalink
Assuming I am reading this right, it is the other way around - the number of possible results raised to the power of the number of hands. In this case, 28 = 256.
I assume you mean something like:
WWWWWWWW
WWWWWWWL
WWWWWWLW
WWWWWWLL
WWWWWLWW
.....
LLLLLLWW
LLLLLLWL
LLLLLLLW
LLLLLLLL
I assume you mean something like:
WWWWWWWW
WWWWWWWL
WWWWWWLW
WWWWWWLL
WWWWWLWW
.....
LLLLLLWW
LLLLLLWL
LLLLLLLW
LLLLLLLL
June 22nd, 2015 at 1:18:59 PM
permalink
I prefer to read it as Player, Banker versus Win, Loss but same effect. Wow, 256 just seems high to me.
"I'm not superstitious but I am a little stitious." -Michael Scott
June 22nd, 2015 at 2:17:56 PM
permalink
like thisQuote: falecf4I prefer to read it as Player, Banker versus Win, Loss but same effect.
B,B,B,B,B,B,B,B
B,B,B,B,B,B,B,P
B,B,B,B,B,B,P,B
B,B,B,B,B,B,P,P
B,B,B,B,B,P,B,B
B,B,B,B,B,P,B,P
B,B,B,B,B,P,P,B
B,B,B,B,B,P,P,P
B,B,B,B,P,B,B,B
B,B,B,B,P,B,B,P
B,B,B,B,P,B,P,B
B,B,B,B,P,B,P,P
B,B,B,B,P,P,B,B
B,B,B,B,P,P,B,P
B,B,B,B,P,P,P,B
B,B,B,B,P,P,P,P
B,B,B,P,B,B,B,B
B,B,B,P,B,B,B,P
B,B,B,P,B,B,P,B
B,B,B,P,B,B,P,P
B,B,B,P,B,P,B,B
B,B,B,P,B,P,B,P
B,B,B,P,B,P,P,B
B,B,B,P,B,P,P,P
B,B,B,P,P,B,B,B
B,B,B,P,P,B,B,P
B,B,B,P,P,B,P,B
B,B,B,P,P,B,P,P
B,B,B,P,P,P,B,B
B,B,B,P,P,P,B,P
B,B,B,P,P,P,P,B
B,B,B,P,P,P,P,P
B,B,P,B,B,B,B,B
B,B,P,B,B,B,B,P
B,B,P,B,B,B,P,B
B,B,P,B,B,B,P,P
B,B,P,B,B,P,B,B
B,B,P,B,B,P,B,P
B,B,P,B,B,P,P,B
B,B,P,B,B,P,P,P
B,B,P,B,P,B,B,B
B,B,P,B,P,B,B,P
B,B,P,B,P,B,P,B
B,B,P,B,P,B,P,P
B,B,P,B,P,P,B,B
B,B,P,B,P,P,B,P
B,B,P,B,P,P,P,B
B,B,P,B,P,P,P,P
B,B,P,P,B,B,B,B
B,B,P,P,B,B,B,P
B,B,P,P,B,B,P,B
B,B,P,P,B,B,P,P
B,B,P,P,B,P,B,B
B,B,P,P,B,P,B,P
B,B,P,P,B,P,P,B
B,B,P,P,B,P,P,P
B,B,P,P,P,B,B,B
B,B,P,P,P,B,B,P
B,B,P,P,P,B,P,B
B,B,P,P,P,B,P,P
B,B,P,P,P,P,B,B
B,B,P,P,P,P,B,P
B,B,P,P,P,P,P,B
B,B,P,P,P,P,P,P
B,P,B,B,B,B,B,B
B,P,B,B,B,B,B,P
B,P,B,B,B,B,P,B
B,P,B,B,B,B,P,P
B,P,B,B,B,P,B,B
B,P,B,B,B,P,B,P
B,P,B,B,B,P,P,B
B,P,B,B,B,P,P,P
B,P,B,B,P,B,B,B
B,P,B,B,P,B,B,P
B,P,B,B,P,B,P,B
B,P,B,B,P,B,P,P
B,P,B,B,P,P,B,B
B,P,B,B,P,P,B,P
B,P,B,B,P,P,P,B
B,P,B,B,P,P,P,P
B,P,B,P,B,B,B,B
B,P,B,P,B,B,B,P
B,P,B,P,B,B,P,B
B,P,B,P,B,B,P,P
B,P,B,P,B,P,B,B
B,P,B,P,B,P,B,P
B,P,B,P,B,P,P,B
B,P,B,P,B,P,P,P
B,P,B,P,P,B,B,B
B,P,B,P,P,B,B,P
B,P,B,P,P,B,P,B
B,P,B,P,P,B,P,P
B,P,B,P,P,P,B,B
B,P,B,P,P,P,B,P
B,P,B,P,P,P,P,B
B,P,B,P,P,P,P,P
B,P,P,B,B,B,B,B
B,P,P,B,B,B,B,P
B,P,P,B,B,B,P,B
B,P,P,B,B,B,P,P
B,P,P,B,B,P,B,B
B,P,P,B,B,P,B,P
B,P,P,B,B,P,P,B
B,P,P,B,B,P,P,P
B,P,P,B,P,B,B,B
B,P,P,B,P,B,B,P
B,P,P,B,P,B,P,B
B,P,P,B,P,B,P,P
B,P,P,B,P,P,B,B
B,P,P,B,P,P,B,P
B,P,P,B,P,P,P,B
B,P,P,B,P,P,P,P
B,P,P,P,B,B,B,B
B,P,P,P,B,B,B,P
B,P,P,P,B,B,P,B
B,P,P,P,B,B,P,P
B,P,P,P,B,P,B,B
B,P,P,P,B,P,B,P
B,P,P,P,B,P,P,B
B,P,P,P,B,P,P,P
B,P,P,P,P,B,B,B
B,P,P,P,P,B,B,P
B,P,P,P,P,B,P,B
B,P,P,P,P,B,P,P
B,P,P,P,P,P,B,B
B,P,P,P,P,P,B,P
B,P,P,P,P,P,P,B
B,P,P,P,P,P,P,P
P,B,B,B,B,B,B,B
P,B,B,B,B,B,B,P
P,B,B,B,B,B,P,B
P,B,B,B,B,B,P,P
P,B,B,B,B,P,B,B
P,B,B,B,B,P,B,P
P,B,B,B,B,P,P,B
P,B,B,B,B,P,P,P
P,B,B,B,P,B,B,B
P,B,B,B,P,B,B,P
P,B,B,B,P,B,P,B
P,B,B,B,P,B,P,P
P,B,B,B,P,P,B,B
P,B,B,B,P,P,B,P
P,B,B,B,P,P,P,B
P,B,B,B,P,P,P,P
P,B,B,P,B,B,B,B
P,B,B,P,B,B,B,P
P,B,B,P,B,B,P,B
P,B,B,P,B,B,P,P
P,B,B,P,B,P,B,B
P,B,B,P,B,P,B,P
P,B,B,P,B,P,P,B
P,B,B,P,B,P,P,P
P,B,B,P,P,B,B,B
P,B,B,P,P,B,B,P
P,B,B,P,P,B,P,B
P,B,B,P,P,B,P,P
P,B,B,P,P,P,B,B
P,B,B,P,P,P,B,P
P,B,B,P,P,P,P,B
P,B,B,P,P,P,P,P
P,B,P,B,B,B,B,B
P,B,P,B,B,B,B,P
P,B,P,B,B,B,P,B
P,B,P,B,B,B,P,P
P,B,P,B,B,P,B,B
P,B,P,B,B,P,B,P
P,B,P,B,B,P,P,B
P,B,P,B,B,P,P,P
P,B,P,B,P,B,B,B
P,B,P,B,P,B,B,P
P,B,P,B,P,B,P,B
P,B,P,B,P,B,P,P
P,B,P,B,P,P,B,B
P,B,P,B,P,P,B,P
P,B,P,B,P,P,P,B
P,B,P,B,P,P,P,P
P,B,P,P,B,B,B,B
P,B,P,P,B,B,B,P
P,B,P,P,B,B,P,B
P,B,P,P,B,B,P,P
P,B,P,P,B,P,B,B
P,B,P,P,B,P,B,P
P,B,P,P,B,P,P,B
P,B,P,P,B,P,P,P
P,B,P,P,P,B,B,B
P,B,P,P,P,B,B,P
P,B,P,P,P,B,P,B
P,B,P,P,P,B,P,P
P,B,P,P,P,P,B,B
P,B,P,P,P,P,B,P
P,B,P,P,P,P,P,B
P,B,P,P,P,P,P,P
P,P,B,B,B,B,B,B
P,P,B,B,B,B,B,P
P,P,B,B,B,B,P,B
P,P,B,B,B,B,P,P
P,P,B,B,B,P,B,B
P,P,B,B,B,P,B,P
P,P,B,B,B,P,P,B
P,P,B,B,B,P,P,P
P,P,B,B,P,B,B,B
P,P,B,B,P,B,B,P
P,P,B,B,P,B,P,B
P,P,B,B,P,B,P,P
P,P,B,B,P,P,B,B
P,P,B,B,P,P,B,P
P,P,B,B,P,P,P,B
P,P,B,B,P,P,P,P
P,P,B,P,B,B,B,B
P,P,B,P,B,B,B,P
P,P,B,P,B,B,P,B
P,P,B,P,B,B,P,P
P,P,B,P,B,P,B,B
P,P,B,P,B,P,B,P
P,P,B,P,B,P,P,B
P,P,B,P,B,P,P,P
P,P,B,P,P,B,B,B
P,P,B,P,P,B,B,P
P,P,B,P,P,B,P,B
P,P,B,P,P,B,P,P
P,P,B,P,P,P,B,B
P,P,B,P,P,P,B,P
P,P,B,P,P,P,P,B
P,P,B,P,P,P,P,P
P,P,P,B,B,B,B,B
P,P,P,B,B,B,B,P
P,P,P,B,B,B,P,B
P,P,P,B,B,B,P,P
P,P,P,B,B,P,B,B
P,P,P,B,B,P,B,P
P,P,P,B,B,P,P,B
P,P,P,B,B,P,P,P
P,P,P,B,P,B,B,B
P,P,P,B,P,B,B,P
P,P,P,B,P,B,P,B
P,P,P,B,P,B,P,P
P,P,P,B,P,P,B,B
P,P,P,B,P,P,B,P
P,P,P,B,P,P,P,B
P,P,P,B,P,P,P,P
P,P,P,P,B,B,B,B
P,P,P,P,B,B,B,P
P,P,P,P,B,B,P,B
P,P,P,P,B,B,P,P
P,P,P,P,B,P,B,B
P,P,P,P,B,P,B,P
P,P,P,P,B,P,P,B
P,P,P,P,B,P,P,P
P,P,P,P,P,B,B,B
P,P,P,P,P,B,B,P
P,P,P,P,P,B,P,B
P,P,P,P,P,B,P,P
P,P,P,P,P,P,B,B
P,P,P,P,P,P,B,P
P,P,P,P,P,P,P,B
P,P,P,P,P,P,P,P
i say start with round 1Quote: falecf4Wow, 256 just seems high to me.
only B or P are possible
from that round we can now have BP or BB or PB or PP after 2 rounds
each round possible outcomes has 2 possible outcomes for the next round (it goes round and round)
2*2 = 4 after 2 rounds
3 rounds = 2*2*2
looks something like this Tree (2 outcomes - 3 rounds)
follow the arrows from 0
to 8 rounds = 2*2*2*2*2*2*2*2
counting Ties
we then have 3 * 3 after 2 rounds
3*3*3 after 3 rounds
3^8 = 6,561 possible sequences
==================================
and they (each possible sequence) are not all equal probable like in a fair coin toss
for example (with the probability of a B or P being constant)
B,B,B,B,B,B,B,B (sequence#1) has the highest probability of happening
and
P,P,P,P,P,P,P,P (sequence#256) has the lowest
now that seems and feels not right to me
at first thought
Sally
I Heart Vi Hart
June 22nd, 2015 at 2:38:39 PM
permalink
Quote: falecf4Just want to make sure I am figuring this right. In baccarat given 8 consecutive hands I want to figure out how many different ways it can happen with ties being excluded. Is it simply the 8 hands to the power of possible outcomes per hand (8^2=64)?
It's more like 2^8.
June 22nd, 2015 at 8:56:02 PM
permalink
Quote: mustangsallylike this
i say start with round 1B,B,B,B,B,B,B,B
B,B,B,B,B,B,B,P
B,B,B,B,B,B,P,B
B,B,B,B,B,B,P,P
B,B,B,B,B,P,B,B
B,B,B,B,B,P,B,P
B,B,B,B,B,P,P,B
B,B,B,B,B,P,P,P
B,B,B,B,P,B,B,B
B,B,B,B,P,B,B,P
B,B,B,B,P,B,P,B
B,B,B,B,P,B,P,P
B,B,B,B,P,P,B,B
B,B,B,B,P,P,B,P
B,B,B,B,P,P,P,B
B,B,B,B,P,P,P,P
B,B,B,P,B,B,B,B
B,B,B,P,B,B,B,P
B,B,B,P,B,B,P,B
B,B,B,P,B,B,P,P
B,B,B,P,B,P,B,B
B,B,B,P,B,P,B,P
B,B,B,P,B,P,P,B
B,B,B,P,B,P,P,P
B,B,B,P,P,B,B,B
B,B,B,P,P,B,B,P
B,B,B,P,P,B,P,B
B,B,B,P,P,B,P,P
B,B,B,P,P,P,B,B
B,B,B,P,P,P,B,P
B,B,B,P,P,P,P,B
B,B,B,P,P,P,P,P
B,B,P,B,B,B,B,B
B,B,P,B,B,B,B,P
B,B,P,B,B,B,P,B
B,B,P,B,B,B,P,P
B,B,P,B,B,P,B,B
B,B,P,B,B,P,B,P
B,B,P,B,B,P,P,B
B,B,P,B,B,P,P,P
B,B,P,B,P,B,B,B
B,B,P,B,P,B,B,P
B,B,P,B,P,B,P,B
B,B,P,B,P,B,P,P
B,B,P,B,P,P,B,B
B,B,P,B,P,P,B,P
B,B,P,B,P,P,P,B
B,B,P,B,P,P,P,P
B,B,P,P,B,B,B,B
B,B,P,P,B,B,B,P
B,B,P,P,B,B,P,B
B,B,P,P,B,B,P,P
B,B,P,P,B,P,B,B
B,B,P,P,B,P,B,P
B,B,P,P,B,P,P,B
B,B,P,P,B,P,P,P
B,B,P,P,P,B,B,B
B,B,P,P,P,B,B,P
B,B,P,P,P,B,P,B
B,B,P,P,P,B,P,P
B,B,P,P,P,P,B,B
B,B,P,P,P,P,B,P
B,B,P,P,P,P,P,B
B,B,P,P,P,P,P,P
B,P,B,B,B,B,B,B
B,P,B,B,B,B,B,P
B,P,B,B,B,B,P,B
B,P,B,B,B,B,P,P
B,P,B,B,B,P,B,B
B,P,B,B,B,P,B,P
B,P,B,B,B,P,P,B
B,P,B,B,B,P,P,P
B,P,B,B,P,B,B,B
B,P,B,B,P,B,B,P
B,P,B,B,P,B,P,B
B,P,B,B,P,B,P,P
B,P,B,B,P,P,B,B
B,P,B,B,P,P,B,P
B,P,B,B,P,P,P,B
B,P,B,B,P,P,P,P
B,P,B,P,B,B,B,B
B,P,B,P,B,B,B,P
B,P,B,P,B,B,P,B
B,P,B,P,B,B,P,P
B,P,B,P,B,P,B,B
B,P,B,P,B,P,B,P
B,P,B,P,B,P,P,B
B,P,B,P,B,P,P,P
B,P,B,P,P,B,B,B
B,P,B,P,P,B,B,P
B,P,B,P,P,B,P,B
B,P,B,P,P,B,P,P
B,P,B,P,P,P,B,B
B,P,B,P,P,P,B,P
B,P,B,P,P,P,P,B
B,P,B,P,P,P,P,P
B,P,P,B,B,B,B,B
B,P,P,B,B,B,B,P
B,P,P,B,B,B,P,B
B,P,P,B,B,B,P,P
B,P,P,B,B,P,B,B
B,P,P,B,B,P,B,P
B,P,P,B,B,P,P,B
B,P,P,B,B,P,P,P
B,P,P,B,P,B,B,B
B,P,P,B,P,B,B,P
B,P,P,B,P,B,P,B
B,P,P,B,P,B,P,P
B,P,P,B,P,P,B,B
B,P,P,B,P,P,B,P
B,P,P,B,P,P,P,B
B,P,P,B,P,P,P,P
B,P,P,P,B,B,B,B
B,P,P,P,B,B,B,P
B,P,P,P,B,B,P,B
B,P,P,P,B,B,P,P
B,P,P,P,B,P,B,B
B,P,P,P,B,P,B,P
B,P,P,P,B,P,P,B
B,P,P,P,B,P,P,P
B,P,P,P,P,B,B,B
B,P,P,P,P,B,B,P
B,P,P,P,P,B,P,B
B,P,P,P,P,B,P,P
B,P,P,P,P,P,B,B
B,P,P,P,P,P,B,P
B,P,P,P,P,P,P,B
B,P,P,P,P,P,P,P
P,B,B,B,B,B,B,B
P,B,B,B,B,B,B,P
P,B,B,B,B,B,P,B
P,B,B,B,B,B,P,P
P,B,B,B,B,P,B,B
P,B,B,B,B,P,B,P
P,B,B,B,B,P,P,B
P,B,B,B,B,P,P,P
P,B,B,B,P,B,B,B
P,B,B,B,P,B,B,P
P,B,B,B,P,B,P,B
P,B,B,B,P,B,P,P
P,B,B,B,P,P,B,B
P,B,B,B,P,P,B,P
P,B,B,B,P,P,P,B
P,B,B,B,P,P,P,P
P,B,B,P,B,B,B,B
P,B,B,P,B,B,B,P
P,B,B,P,B,B,P,B
P,B,B,P,B,B,P,P
P,B,B,P,B,P,B,B
P,B,B,P,B,P,B,P
P,B,B,P,B,P,P,B
P,B,B,P,B,P,P,P
P,B,B,P,P,B,B,B
P,B,B,P,P,B,B,P
P,B,B,P,P,B,P,B
P,B,B,P,P,B,P,P
P,B,B,P,P,P,B,B
P,B,B,P,P,P,B,P
P,B,B,P,P,P,P,B
P,B,B,P,P,P,P,P
P,B,P,B,B,B,B,B
P,B,P,B,B,B,B,P
P,B,P,B,B,B,P,B
P,B,P,B,B,B,P,P
P,B,P,B,B,P,B,B
P,B,P,B,B,P,B,P
P,B,P,B,B,P,P,B
P,B,P,B,B,P,P,P
P,B,P,B,P,B,B,B
P,B,P,B,P,B,B,P
P,B,P,B,P,B,P,B
P,B,P,B,P,B,P,P
P,B,P,B,P,P,B,B
P,B,P,B,P,P,B,P
P,B,P,B,P,P,P,B
P,B,P,B,P,P,P,P
P,B,P,P,B,B,B,B
P,B,P,P,B,B,B,P
P,B,P,P,B,B,P,B
P,B,P,P,B,B,P,P
P,B,P,P,B,P,B,B
P,B,P,P,B,P,B,P
P,B,P,P,B,P,P,B
P,B,P,P,B,P,P,P
P,B,P,P,P,B,B,B
P,B,P,P,P,B,B,P
P,B,P,P,P,B,P,B
P,B,P,P,P,B,P,P
P,B,P,P,P,P,B,B
P,B,P,P,P,P,B,P
P,B,P,P,P,P,P,B
P,B,P,P,P,P,P,P
P,P,B,B,B,B,B,B
P,P,B,B,B,B,B,P
P,P,B,B,B,B,P,B
P,P,B,B,B,B,P,P
P,P,B,B,B,P,B,B
P,P,B,B,B,P,B,P
P,P,B,B,B,P,P,B
P,P,B,B,B,P,P,P
P,P,B,B,P,B,B,B
P,P,B,B,P,B,B,P
P,P,B,B,P,B,P,B
P,P,B,B,P,B,P,P
P,P,B,B,P,P,B,B
P,P,B,B,P,P,B,P
P,P,B,B,P,P,P,B
P,P,B,B,P,P,P,P
P,P,B,P,B,B,B,B
P,P,B,P,B,B,B,P
P,P,B,P,B,B,P,B
P,P,B,P,B,B,P,P
P,P,B,P,B,P,B,B
P,P,B,P,B,P,B,P
P,P,B,P,B,P,P,B
P,P,B,P,B,P,P,P
P,P,B,P,P,B,B,B
P,P,B,P,P,B,B,P
P,P,B,P,P,B,P,B
P,P,B,P,P,B,P,P
P,P,B,P,P,P,B,B
P,P,B,P,P,P,B,P
P,P,B,P,P,P,P,B
P,P,B,P,P,P,P,P
P,P,P,B,B,B,B,B
P,P,P,B,B,B,B,P
P,P,P,B,B,B,P,B
P,P,P,B,B,B,P,P
P,P,P,B,B,P,B,B
P,P,P,B,B,P,B,P
P,P,P,B,B,P,P,B
P,P,P,B,B,P,P,P
P,P,P,B,P,B,B,B
P,P,P,B,P,B,B,P
P,P,P,B,P,B,P,B
P,P,P,B,P,B,P,P
P,P,P,B,P,P,B,B
P,P,P,B,P,P,B,P
P,P,P,B,P,P,P,B
P,P,P,B,P,P,P,P
P,P,P,P,B,B,B,B
P,P,P,P,B,B,B,P
P,P,P,P,B,B,P,B
P,P,P,P,B,B,P,P
P,P,P,P,B,P,B,B
P,P,P,P,B,P,B,P
P,P,P,P,B,P,P,B
P,P,P,P,B,P,P,P
P,P,P,P,P,B,B,B
P,P,P,P,P,B,B,P
P,P,P,P,P,B,P,B
P,P,P,P,P,B,P,P
P,P,P,P,P,P,B,B
P,P,P,P,P,P,B,P
P,P,P,P,P,P,P,B
P,P,P,P,P,P,P,P
only B or P are possible
from that round we can now have BP or BB or PB or PP after 2 rounds
each round possible outcomes has 2 possible outcomes for the next round (it goes round and round)
2*2 = 4 after 2 rounds
3 rounds = 2*2*2
looks something like this Tree (2 outcomes - 3 rounds)
follow the arrows from 0
to 8 rounds = 2*2*2*2*2*2*2*2
counting Ties
we then have 3 * 3 after 2 rounds
3*3*3 after 3 rounds
3^8 = 6,561 possible sequences
==================================
and they (each possible sequence) are not all equal probable like in a fair coin toss
for example (with the probability of a B or P being constant)
B,B,B,B,B,B,B,B (sequence#1) has the highest probability of happening
and
P,P,P,P,P,P,P,P (sequence#256) has the lowest
now that seems and feels not right to me
at first thought
Sally
Thank you Sally this helps! Glad you brought up the probability also. Banker has a slightly higher probability of occurring than Player so the gap must widen when we look at the probability of a run of 8 for either and the gap is filled in by all of the other probabilities. Now does this make other sequences equal, such as B,P,P,P,P,P,P,P and P,P,B,P,P,P,P,P or would the probability of a sequence only be equal if the "streaks" within the sequence are equal B,B,P,B,B,B,B,B and B,B,B,B,B,P,B,B where they both have a streak of 2 and a streak of 5?
"I'm not superstitious but I am a little stitious." -Michael Scott
June 22nd, 2015 at 10:45:56 PM
permalink
Quote: falecf4Quote: mustangsallylike this
i say start with round 1B,B,B,B,B,B,B,B
B,B,B,B,B,B,B,P
B,B,B,B,B,B,P,B
B,B,B,B,B,B,P,P
B,B,B,B,B,P,B,B
B,B,B,B,B,P,B,P
B,B,B,B,B,P,P,B
B,B,B,B,B,P,P,P
B,B,B,B,P,B,B,B
B,B,B,B,P,B,B,P
B,B,B,B,P,B,P,B
B,B,B,B,P,B,P,P
B,B,B,B,P,P,B,B
B,B,B,B,P,P,B,P
B,B,B,B,P,P,P,B
B,B,B,B,P,P,P,P
B,B,B,P,B,B,B,B
B,B,B,P,B,B,B,P
B,B,B,P,B,B,P,B
B,B,B,P,B,B,P,P
B,B,B,P,B,P,B,B
B,B,B,P,B,P,B,P
B,B,B,P,B,P,P,B
B,B,B,P,B,P,P,P
B,B,B,P,P,B,B,B
B,B,B,P,P,B,B,P
B,B,B,P,P,B,P,B
B,B,B,P,P,B,P,P
B,B,B,P,P,P,B,B
B,B,B,P,P,P,B,P
B,B,B,P,P,P,P,B
B,B,B,P,P,P,P,P
B,B,P,B,B,B,B,B
B,B,P,B,B,B,B,P
B,B,P,B,B,B,P,B
B,B,P,B,B,B,P,P
B,B,P,B,B,P,B,B
B,B,P,B,B,P,B,P
B,B,P,B,B,P,P,B
B,B,P,B,B,P,P,P
B,B,P,B,P,B,B,B
B,B,P,B,P,B,B,P
B,B,P,B,P,B,P,B
B,B,P,B,P,B,P,P
B,B,P,B,P,P,B,B
B,B,P,B,P,P,B,P
B,B,P,B,P,P,P,B
B,B,P,B,P,P,P,P
B,B,P,P,B,B,B,B
B,B,P,P,B,B,B,P
B,B,P,P,B,B,P,B
B,B,P,P,B,B,P,P
B,B,P,P,B,P,B,B
B,B,P,P,B,P,B,P
B,B,P,P,B,P,P,B
B,B,P,P,B,P,P,P
B,B,P,P,P,B,B,B
B,B,P,P,P,B,B,P
B,B,P,P,P,B,P,B
B,B,P,P,P,B,P,P
B,B,P,P,P,P,B,B
B,B,P,P,P,P,B,P
B,B,P,P,P,P,P,B
B,B,P,P,P,P,P,P
B,P,B,B,B,B,B,B
B,P,B,B,B,B,B,P
B,P,B,B,B,B,P,B
B,P,B,B,B,B,P,P
B,P,B,B,B,P,B,B
B,P,B,B,B,P,B,P
B,P,B,B,B,P,P,B
B,P,B,B,B,P,P,P
B,P,B,B,P,B,B,B
B,P,B,B,P,B,B,P
B,P,B,B,P,B,P,B
B,P,B,B,P,B,P,P
B,P,B,B,P,P,B,B
B,P,B,B,P,P,B,P
B,P,B,B,P,P,P,B
B,P,B,B,P,P,P,P
B,P,B,P,B,B,B,B
B,P,B,P,B,B,B,P
B,P,B,P,B,B,P,B
B,P,B,P,B,B,P,P
B,P,B,P,B,P,B,B
B,P,B,P,B,P,B,P
B,P,B,P,B,P,P,B
B,P,B,P,B,P,P,P
B,P,B,P,P,B,B,B
B,P,B,P,P,B,B,P
B,P,B,P,P,B,P,B
B,P,B,P,P,B,P,P
B,P,B,P,P,P,B,B
B,P,B,P,P,P,B,P
B,P,B,P,P,P,P,B
B,P,B,P,P,P,P,P
B,P,P,B,B,B,B,B
B,P,P,B,B,B,B,P
B,P,P,B,B,B,P,B
B,P,P,B,B,B,P,P
B,P,P,B,B,P,B,B
B,P,P,B,B,P,B,P
B,P,P,B,B,P,P,B
B,P,P,B,B,P,P,P
B,P,P,B,P,B,B,B
B,P,P,B,P,B,B,P
B,P,P,B,P,B,P,B
B,P,P,B,P,B,P,P
B,P,P,B,P,P,B,B
B,P,P,B,P,P,B,P
B,P,P,B,P,P,P,B
B,P,P,B,P,P,P,P
B,P,P,P,B,B,B,B
B,P,P,P,B,B,B,P
B,P,P,P,B,B,P,B
B,P,P,P,B,B,P,P
B,P,P,P,B,P,B,B
B,P,P,P,B,P,B,P
B,P,P,P,B,P,P,B
B,P,P,P,B,P,P,P
B,P,P,P,P,B,B,B
B,P,P,P,P,B,B,P
B,P,P,P,P,B,P,B
B,P,P,P,P,B,P,P
B,P,P,P,P,P,B,B
B,P,P,P,P,P,B,P
B,P,P,P,P,P,P,B
B,P,P,P,P,P,P,P
P,B,B,B,B,B,B,B
P,B,B,B,B,B,B,P
P,B,B,B,B,B,P,B
P,B,B,B,B,B,P,P
P,B,B,B,B,P,B,B
P,B,B,B,B,P,B,P
P,B,B,B,B,P,P,B
P,B,B,B,B,P,P,P
P,B,B,B,P,B,B,B
P,B,B,B,P,B,B,P
P,B,B,B,P,B,P,B
P,B,B,B,P,B,P,P
P,B,B,B,P,P,B,B
P,B,B,B,P,P,B,P
P,B,B,B,P,P,P,B
P,B,B,B,P,P,P,P
P,B,B,P,B,B,B,B
P,B,B,P,B,B,B,P
P,B,B,P,B,B,P,B
P,B,B,P,B,B,P,P
P,B,B,P,B,P,B,B
P,B,B,P,B,P,B,P
P,B,B,P,B,P,P,B
P,B,B,P,B,P,P,P
P,B,B,P,P,B,B,B
P,B,B,P,P,B,B,P
P,B,B,P,P,B,P,B
P,B,B,P,P,B,P,P
P,B,B,P,P,P,B,B
P,B,B,P,P,P,B,P
P,B,B,P,P,P,P,B
P,B,B,P,P,P,P,P
P,B,P,B,B,B,B,B
P,B,P,B,B,B,B,P
P,B,P,B,B,B,P,B
P,B,P,B,B,B,P,P
P,B,P,B,B,P,B,B
P,B,P,B,B,P,B,P
P,B,P,B,B,P,P,B
P,B,P,B,B,P,P,P
P,B,P,B,P,B,B,B
P,B,P,B,P,B,B,P
P,B,P,B,P,B,P,B
P,B,P,B,P,B,P,P
P,B,P,B,P,P,B,B
P,B,P,B,P,P,B,P
P,B,P,B,P,P,P,B
P,B,P,B,P,P,P,P
P,B,P,P,B,B,B,B
P,B,P,P,B,B,B,P
P,B,P,P,B,B,P,B
P,B,P,P,B,B,P,P
P,B,P,P,B,P,B,B
P,B,P,P,B,P,B,P
P,B,P,P,B,P,P,B
P,B,P,P,B,P,P,P
P,B,P,P,P,B,B,B
P,B,P,P,P,B,B,P
P,B,P,P,P,B,P,B
P,B,P,P,P,B,P,P
P,B,P,P,P,P,B,B
P,B,P,P,P,P,B,P
P,B,P,P,P,P,P,B
P,B,P,P,P,P,P,P
P,P,B,B,B,B,B,B
P,P,B,B,B,B,B,P
P,P,B,B,B,B,P,B
P,P,B,B,B,B,P,P
P,P,B,B,B,P,B,B
P,P,B,B,B,P,B,P
P,P,B,B,B,P,P,B
P,P,B,B,B,P,P,P
P,P,B,B,P,B,B,B
P,P,B,B,P,B,B,P
P,P,B,B,P,B,P,B
P,P,B,B,P,B,P,P
P,P,B,B,P,P,B,B
P,P,B,B,P,P,B,P
P,P,B,B,P,P,P,B
P,P,B,B,P,P,P,P
P,P,B,P,B,B,B,B
P,P,B,P,B,B,B,P
P,P,B,P,B,B,P,B
P,P,B,P,B,B,P,P
P,P,B,P,B,P,B,B
P,P,B,P,B,P,B,P
P,P,B,P,B,P,P,B
P,P,B,P,B,P,P,P
P,P,B,P,P,B,B,B
P,P,B,P,P,B,B,P
P,P,B,P,P,B,P,B
P,P,B,P,P,B,P,P
P,P,B,P,P,P,B,B
P,P,B,P,P,P,B,P
P,P,B,P,P,P,P,B
P,P,B,P,P,P,P,P
P,P,P,B,B,B,B,B
P,P,P,B,B,B,B,P
P,P,P,B,B,B,P,B
P,P,P,B,B,B,P,P
P,P,P,B,B,P,B,B
P,P,P,B,B,P,B,P
P,P,P,B,B,P,P,B
P,P,P,B,B,P,P,P
P,P,P,B,P,B,B,B
P,P,P,B,P,B,B,P
P,P,P,B,P,B,P,B
P,P,P,B,P,B,P,P
P,P,P,B,P,P,B,B
P,P,P,B,P,P,B,P
P,P,P,B,P,P,P,B
P,P,P,B,P,P,P,P
P,P,P,P,B,B,B,B
P,P,P,P,B,B,B,P
P,P,P,P,B,B,P,B
P,P,P,P,B,B,P,P
P,P,P,P,B,P,B,B
P,P,P,P,B,P,B,P
P,P,P,P,B,P,P,B
P,P,P,P,B,P,P,P
P,P,P,P,P,B,B,B
P,P,P,P,P,B,B,P
P,P,P,P,P,B,P,B
P,P,P,P,P,B,P,P
P,P,P,P,P,P,B,B
P,P,P,P,P,P,B,P
P,P,P,P,P,P,P,B
P,P,P,P,P,P,P,P
only B or P are possible
from that round we can now have BP or BB or PB or PP after 2 rounds
each round possible outcomes has 2 possible outcomes for the next round (it goes round and round)
2*2 = 4 after 2 rounds
3 rounds = 2*2*2
looks something like this Tree (2 outcomes - 3 rounds)
follow the arrows from 0
to 8 rounds = 2*2*2*2*2*2*2*2
counting Ties
we then have 3 * 3 after 2 rounds
3*3*3 after 3 rounds
3^8 = 6,561 possible sequences
==================================
and they (each possible sequence) are not all equal probable like in a fair coin toss
for example (with the probability of a B or P being constant)
B,B,B,B,B,B,B,B (sequence#1) has the highest probability of happening
and
P,P,P,P,P,P,P,P (sequence#256) has the lowest
now that seems and feels not right to me
at first thought
Sally
Thank you Sally this helps! Glad you brought up the probability also. Banker has a slightly higher probability of occurring than Player so the gap must widen when we look at the probability of a run of 8 for either and the gap is filled in by all of the other probabilities. Now does this make other sequences equal, such as B,P,P,P,P,P,P,P and P,P,B,P,P,P,P,P or would the probability of a sequence only be equal if the "streaks" within the sequence are equal B,B,P,B,B,B,B,B and B,B,B,B,B,P,B,B where they both have a streak of 2 and a streak of 5?
The probabilities are equal as long as the number of players and number of bankers in both groups are the same.
June 23rd, 2015 at 5:35:40 AM
permalink
Quote: TwirdmanThe probabilities are equal as long as the number of players and number of bankers in both groups are the same.
Thank you Twirdman! So a streak of all Player is least likely to occur and each time a Banker is added to the sequence the probability increases until there are all Bankers, being the most likely event.
Thank you for everyone's contribution! This information is very useful to me and, at the same time, worthless for a worthless betting system! 😉
"I'm not superstitious but I am a little stitious." -Michael Scott
June 23rd, 2015 at 7:46:30 AM
permalink
Then it was worth asking the question. Answer: there is no good betting system when playing Baccarat!Quote: falecf4...for a worthless betting system! ...
June 23rd, 2015 at 9:10:45 AM
permalink
Optimal wagering in commission baccarat is to always wager on Banker. I am yet to observe a baccarat player who plays optimally.Quote: charliepatrickthere is no good betting system when playing Baccarat!
Climate Casino: https://climatecasino.net/climate-casino/
June 23rd, 2015 at 9:27:25 AM
permalink
Quote: teliot...I am yet to observe a baccarat player who plays optimally.
The optimal play is to not play at all.
DUHHIIIIIIIII HEARD THAT!